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Chapter 1. Introduction 

 Background 
Strut-and-tie method (STM) is a practical design tool for deep structural members 
that simplifies their internal force flow into idealized struts and ties. Typically, the 
configuration of the strut-and-tie models developed in drilled shaft footings forms 
three-dimensional (3D) shapes. TxDOT Project 0-6953: 3D Strut-and-Tie 
Modeling for Design of Drilled Shaft Footings (Yi et al., 2022) established a series 
of design recommendations for drilled shaft footings using the 3D STM based on 
large-scale tests and numerical analyses. However, the comprehensive research was 
limited to uniaxial loading scenarios, and the design example proposed by the 
research was also primarily based on the recommendations for drilled shaft footings 
subjected to uniaxial loads. The design example also includes one biaxial eccentric 
loading case: axial compression combined with mild biaxial flexure resulting in 
non-uniform compression in drilled shafts. The configuration of the 3D strut-and-
tie model developed for the biaxial load case is the same as that developed from the 
simplest load scenario (uniaxial compression-only loading); therefore, the proposed 
recommendations could be applicable to the biaxial load case.  

On the other hand, in-practice drilled shaft footings are also designed with biaxial 
eccentric loading cases inducing tension at one corner of the column or one of four 
drilled shafts. Due to the lack of research on the 3D strut-and-tie models of drilled 
shaft footings under these complex loading conditions, the recommendations 
proposed by Yi et al. (2022) cannot be directly applied when designing the footings 
under biaxial eccentric loading. These limitations hinder the application of the 3D 
STM to a consistent design of drilled shaft footings that can be subjected to various 
loading conditions. Therefore, refined recommendations for the 3D STM design for 
drilled shaft footings that cover biaxial loading scenarios are needed. 

 Project Objective and Scope 
The research team expanded and refined the guidelines proposed by Yi et al. (2022) 
for using the 3D STM in drilled shaft footings under biaxial eccentric loading which 
is the more common loading scenario in practice. The refinements were conducted 
theoretically; therefore, all proposed recommendations in this research are 
established based on a conservative standpoint. The drilled shaft footing design 
example of Yi et al. (2022) was updated for two additional biaxial eccentric load 
cases using the refined recommendations.  
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 Organization 
The literature regarding design recommendations for drilled shaft footings 
subjected to biaxial eccentric loading is reviewed in Chapter 2. Chapter 3 
categorizes the load cases used in the in-practice drilled shaft footings constructed 
by TxDOT in Texas to clarify the proportion of biaxial eccentric load cases in the 
total load cases. Chapter 4 contains a summary of the 3D STM design 
recommendations for drilled shaft footings proposed by Yi et al. (2022). The 
recommendations are refined in Chapter 5 to apply the 3D STM when designing 
drilled shaft footings subjected to biaxial eccentric loading. Chapter 6 provides the 
design example for a drilled shaft footing under biaxial eccentric load cases using 
the refined design recommendations to supplement the design example proposed 
by Yi et al. (2022). Lastly, the outcomes of this research and conclusions are 
summarized in Chapter 7.  
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Chapter 2. Literature Review 

To the authors’ knowledge, the research on drilled shaft footing subjected to biaxial 
loading conditions is limited despite the fact that this is a common loading scenario 
in current practice. Current specifications addressing strut-and-tie modeling were 
formulated based on research of 2D deep beams and thus those are conservative for 
3D structures like four drilled shaft footings, so previous researchers mitigate some 
over-conservatism by updating and adapting their stress limits for 3D structures. In 
addition, most studies investigated the behavior of footings under pure axial 
compression, and a few studies tested specimens under uniaxial eccentric loading 
conditions due to the limited knowledge. Regarding the design examples for drilled 
shaft footings under biaxial eccentric loading, the only study found was conducted 
by Ballestrino et al. (2011) in fib bulletin 61, in which there are examples of strut-
and-tie models for a variety of structural components.   

 
Figure 2.1 Dimension and load condition (Ballestrino et al., 2011) 

In the example, a rectangular footing with a center-located rectangular column was 
supported on the ground, not on a group of drilled shafts, as shown in Figure 2.1. 
The biaxial bending resulted in a non-uniform distribution of the compression over 
the soil underneath, and tensile reaction would not be developed. Ballestrino et al. 
(2011) assumed that the reactions of the soil were calculated in four each quadrant 
and were located at the center of the corresponding quadrant. A sectional analysis 
of the column was used to determine the forces and the locations of the equivalent 
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forces. Based on their assumptions, they developed a strut-and-tie model in order 
to represent the internal force flow, as illustrated in Figure 2.2. 

 

Figure 2.2 Strut-and-tie model of footing under biaxial loading (Ballestrino et al., 2011) 

When proportioning ties, the authors assumed that the bottom mat reinforcement 
was distributed uniformly (i.e., a grid layout), and all reinforcement in the half of 
the cross-section was considered to contribute to the corresponding tie capacities 
since the ground supported the footing. The authors recommended that the column 
bars be bent inward for sufficient development. 

The triaxial hydrostatic compressive strength of the concrete was employed for 
checking the nodal capacity of the CCC node, Node 6. The required area was 
calculated from that the factored force in the strut was divided by the triaxial 
concrete strength. The nodal strength was acceptable because the required area was 
much smaller than the column dimension.  

The anchorage length of the vertical column bars at Node 5 started from the end of 
the bend with the assumption of 90-degree hooked bars. The anchorage length was 
calculated in accordance with CEB–FIP recommendations (1999). 

In summary, there are several limitations to directly comparing this study and 
Ballestrino et al. (2011). The four drilled shafts support the footing in this study, 
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while the footings were supported by the ground. If tension develops on the bottom 
face due to large flexure, some part of the bottom face cannot resist the tension due 
to the characteristics of the soil. Additionally, it was not necessary to check stresses 
at bottom nodes because the extremely large bearing area of bottom nodes resulting 
from the ground supporting condition, not supporting by shafts. Moreover, 
anchorage length of column reinforcement was checked from the end of the bend 
to the end of steel while available development length usually defines from the 
critical section to the end of steel or the start of the bend. Notably, the research team 
found that Ballestrino et al. (2011) employed triaxial compressive strength. 
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Chapter 3. Design Load Case Review 

The research team at the University of Texas at Austin, with support from the 
TxDOT project team, reviewed load cases of several constructed drilled shaft 
footings in bridge projects that TxDOT and their consultants have designed.  

The load cases in drilled shaft footings can be divided into seven categories 
depending on the stress state over the column section and shaft, as illustrated in 
Figure 3.1. Load Case I (LC1) is pure axial compressive loading, resulting in a 
uniform compression over the column section and uniform compressive reactions 
in the shafts. Load Cases II (LC2), III (LC3), and IV (LC4) represent axial 
compression with uniaxial bending. Two groups of shafts react with non-uniform 
compression in LC2 and LC3, while severe uniaxial flexure in LC4 results in two 
shafts in tension. Mild flexure in LC2 leads to the compressive distribution over the 
entire column section, whereas moderate and severe uniaxial flexure in LC3 and 
LC4, respectively, result in tension on one side of the column section and 
compression on the other side. Biaxial load scenarios from Load Case V (LC5), VI 
(LC6), and VII (LC7) have a stress state in the column section similar to load cases 
with uniaxial flexure (LC2 through LC4). Non-uniform compressive reaction 
develops in LC5 and LC6. The moderate biaxial flexure in LC6 causes tensile stress 
at one corner of the column section. Severe biaxial flexure in LC7 results in tension 
in one shaft and tension on one side of the column section. Note that the design 
examples for LC1 through LC5 were provided in the previous research, Yi et al. 
(2022). 
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Figure 3.1 Load case classification depending on the stress over the column section and 

in shafts. The darker the circle, the higher the stress level. 

From three constructed drilled shaft footings provided by TxDOT, total 354 load 
cases were compiled and reviewed. Cases where the ratio of minimum-to-
maximum bending moments was less than 0.2 were categorized as under a uniaxial 
load rather than a biaxial load, since the flexural stresses induced from one of the 
bending moments about the certain axis would dominate the behavior of the 
footings. Table 3.1 summarizes the number of each load case for each constructed 
footing after calculating reactions in the drilled shafts and stresses at the corner of 
the columns. Figure 3.2 shows the distribution of the load cases. The most common 
load case was LC3, axial compression with moderate uniaxial flexure. LC6, axial 
compression with moderate biaxial flexure, is the next most common. Load cases 
with moderate uniaxial or biaxial flexure, resulting in a non-uniform compression 
in the shafts and tensile stress in at least one corner of the column section, occurred 
the most frequently (85.6%) in the design of the drilled shaft footing. Biaxial load 
combinations (LC6 and LC7), the focus of this research, made up 17.8% of the load 
cases. 
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Table 3.1 Summary of reviewed load cases 

Footing 
Examples Total LC I LC II LC III LC IV LC V LC VI LC VII 

Ratio 
(LC VI + 
LC VII) 

Footing A 288 0 1 251 8 0 10 18 9.7% 

Footing B 22 0 1 1 0 10 10 0 45.5% 

Footing C 44 0 2 6 0 11 25 0 56.8% 

Total 354 0 4 258 8 21 45 18 17.8% 
Percentage 
of all load 

cases 
 0.0% 1.1% 72.9% 2.3% 5.9% 12.7% 5.1%  

 

 

Figure 3.2 Distribution of reviewed load cases  
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Chapter 4. Design Recommendations: TxDOT 
Project 0-6953 

TxDOT Project 0-6953 (Yi et al., 2022) proposed designs for drilled shaft footings 
using the 3D STM based on the data and insights obtained from large-scale tests 
and numerical analyses for drilled shaft footings under uniaxial loading scenarios. 
In accordance with the recommendations, Yi et al. (2022) also provided a drilled 
shaft footing design example under various uniaxial and biaxial loading scenarios.  

The 3D STM-based design procedure for drilled shaft footings recommended by 
Yi et al. (2022) is summarized below and detailed in the following subsections:  

 

1) Developing a 3D strut-and-tie model 

2) Proportioning ties 

3) Performing nodal strength checks 

4) Proportioning shrinkage and temperature reinforcement 

5) Providing necessary anchorage for ties 

 Developing a 3D Strut-and-Tie Model 
The configuration of a 3D strut-and-tie model for a drilled shaft footing was 
determined by the force flow according to the considered load combination. The 
internal stress field of the footing was expressed with struts and ties comprising an 
idealized truss. To do so, the applied load on the column was transformed into an 
equivalent force system over the column-to-footing interface. Assuming the 
column section remained plane during loading, the stress distribution over the 
column section was subdivided into four components, and struts were positioned at 
the centroids of the subdivided regions to describe the internal force flow of the 
footing flowing down to four drilled shafts. When the applied uniaxial flexural 
stresses induced tension at one face of the column, a simplified rectangular stress 
block was used for concrete in compression based on the factors proposed by 
Collins and Mitchell (1991). The equivalent stress block factors made it possible to 
model the linear and nonlinear behavior of the concrete. Further, the tensile 
capacity of the concrete was neglected, and the column reinforcement at the tensile 
face of the column was only considered to resist the tie force in the column. Figure 



10 

4.1 illustrates the 3D strut-and-tie models and their equivalent force systems at the 
interface depending on the applied loading scenarios. 

 
(a) Load Case I, II, and V 

 
(b) Load Case III 

 
(c) Load Case IV 

Figure 4.1 3D strut-and-tie models under various loading scenarios 

The basic assumptions employed to determine 3D strut-and-tie models are as 
follows:  
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• The equivalent force system determined the nodal positions beneath the 
column, and the nodes were located 0.1 times the height along the z-axis if 
there was no top tie ring in the 3D STM. (Figure 4.1a and b). 

• The position of the four nodes for the top tie ring (Figure 4.1c) was the 
projection of the center of the drilled shafts at the elevation of top mat 
reinforcement, and the nodes beneath the column were positioned on the 
same horizontal plane of the top tie ring. 

• The position of the four nodes above the drilled shafts was the projection of 
the center of the drilled shafts at the elevation of bottom mat reinforcement. 

• Ties on the plane of the bottom/top tie ring were placed along the axis of 
bottom/top mat reinforcement.  

• Column ties stretched down to the plane of the bottom tie ring were 
positioned at the axis of the tensile column reinforcement array. 

• A strut was placed to meet the equilibrium condition with applied forces 
and reaction forces in each axis at each node. The angle between a diagonal 
strut and the plane of bottom mat reinforcement and the angle between a 
strut and a tie on the same plane were limited to 25–65 degrees. 

• Tie and strut forces could be computed using statics (method of joints or 
method of sections).  

 Proportioning Ties 
The bottom and top mat reinforcement, which are placed the entire span of the 
footing, can be engaged to take the tie forces if the reinforcement is sufficiently 
anchored. This recommendation was established based on the experimental test 
results conducted for the grid and banded layouts, and the ultimate capacities of the 
specimens were comparable regardless of the layouts (Yi et al., 2022). Therefore, 
the capacity of a tie element can be estimated, as shown in Eq. (4.1). 

 
𝑃𝑃𝑛𝑛,𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑦𝑦𝐴𝐴𝑠𝑠𝑡𝑡 Eq. (4.1) 
 
where:  

 

𝑃𝑃𝑛𝑛,𝑡𝑡𝑡𝑡𝑡𝑡  = nominal resistance of a tie [kip] 
𝑓𝑓𝑦𝑦 = yield strength of non-prestressed longitudinal reinforcement [ksi] 
𝐴𝐴𝑠𝑠𝑡𝑡 = area of non-prestressed longitudinal reinforcement engaged in 

taking the tie force [in.2] 
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Generally, two horizontal ties in each direction are provided to a 3D strut-and-tie 
model for drilled shaft footings supported by four drilled shafts. Therefore, half the 
amount of the top or bottom mat reinforcement is used to estimate the tie force. 
Further, all drilled shaft reinforcing bars in the drilled shaft under tension are also 
engaged to take the drilled shaft tie force. Like determining the equivalent force 
system, only the column reinforcement at the tensile face of the column is 
considered to calculate the capacity of the column tie element. 

 Nodal Strength Checks 
A simple but straightforward 3D nodal geometry was proposed to take into account 
the triaxial confinement effect and the strut-to-node interface of the node (Figure 
4.2). The sections of the nodes performing the nodal strength checks are illustrated 
in Figure 4.3. The assumptions for defining the 3D nodal geometry are described 
as follows: 

• Non-hydrostatic nodes and prismatic struts with a rectangular cross-section 
were used. 

• The circular bearing face at the drilled shafts was assumed to be an 
equivalent square-shaped bearing face to define the nodal geometry. Hence, 
the strut width at the node was used as the width of the equivalent square 
bearing face. 

• The back face height of the CCC node was assumed to be twice the distance 
from the top surface. 

• The back face height of the CTT nodes above the drilled shafts was assumed 
to be twice the distance from the bottom surface 

• If multiple struts were connected to a node forming multiple strut-to-node 
interfaces, the strut forces were resolved into a single force applied 
perpendicularly to a single strut-to-node interface. 
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• The equivalent square bearing face was rotated towards the direction of the 
resolved strut, and the length of the strut-to-node interface was derived from 
the inclination of the resolved strut and the specified dimensions. 

 

 

Figure 4.2 Detail of 3D nodal geometry in drilled shaft footing 
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(a) Load Case I, II, and V 

 
(b) Load Case III 

        
(c) Load Case IV 

Figure 4.3 Sectional views that demonstrates 3D nodal geometry for 3D strut-and-tie 
models under various loading scenarios 
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4.3.1. Confinement Modification Factor 
Nodal strength enhancement due to the massive concrete surrounding a node can 
be considered by employing the confinement modification factor. The factor is 
determined by a bearing frustum and allowed up to 2.0 for CCT and CTT nodes, 
which is the same as the limit for all node types of 2D structures (AASHTO LRFD 
Bridge Design Specifications, 2019; ACI318-19, 2019; CSA A23.3-14, 2014). Yi 
et al. (2022) found that for drilled shaft footing specimens under flexural stresses, 
the nodal region of the CCC node, whose bearing area is smaller than that of the 
CTT node, remained largely undamaged until the ultimate state of the footing. 
Nevertheless, the ultimate state was governed by the failure in the vicinity of the 
CTT node. Therefore, the recommendations proposed using a maximum 
confinement of 3.0 for CCC nodes under triaxial compression, the same as specified 
in Eurocode 2 (2004) and fib Model Code 2010 (2013).  

 
Figure 4.4 Determination of notional area (adapted from AASHTO LRFD, 2020) 

𝑚𝑚 = �𝐴𝐴2 𝐴𝐴1� ≤ 3.0  (CCC nodes)
   2.0 (Other nodes)  Eq. (4.2) 

where:   
𝑚𝑚  = confinement modification factor 
𝐴𝐴1 = area under bearing device [in.2] 
𝐴𝐴2 = notional area defined as shown in Figure 4.4 [in.2] 

4.3.2. Concrete Efficiency Factor 
Providing crack control reinforcement at the plane of the strut is challenging for the 
3D strut-and-tie model of drilled shaft footings. Further, Yi et al. (2022) identified 
the contribution of side face reinforcement to the ultimate capacity from large-scale 
drilled shaft footing tests. Therefore, the recommendations proposed providing at 
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least 0.18% side reinforcement orthogonally at all side surfaces of the footing, in 
accordance with the shrinkage and temperature reinforcement requirement 
specified in AASHTO LRFD (2020) (Article 5.10.6), instead of the crack control 
reinforcement requirement specified in current provisions for 2D structures. If the 
side reinforcement requirement was satisfied, the current 2D STM provision of the 
efficiency factor could be maintained, whereas the minimum strut efficiency factor 
(0.45) was recommended when the provided side reinforcement ratio is smaller 
than 0.18%. 

4.3.3. Summary 
The nodal strength at all faces of the nodes with defined nodal geometry in drilled 
shaft footings can be estimated based on Eq. (4.3). 

𝑃𝑃𝑛𝑛,𝑛𝑛 = 𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛 Eq. (4.3) 

where:   

𝑃𝑃𝑛𝑛,𝑛𝑛  = nominal resistance of a node face [kip] 
𝑓𝑓𝑐𝑐𝑐𝑐  = effective compressive stress at the node face, taken as 𝑚𝑚𝑚𝑚𝑓𝑓𝑐𝑐′ [ksi] 

 𝑚𝑚  = confinement modification factor, taken as �𝐴𝐴2 𝐴𝐴1⁄ ≤ 3.0 for CCC 
nodes and 2.0 for other node types (CCT and CTT), as defined in 
Article 5.6.5 

 𝑚𝑚 
 
 
 

= the minimum concrete efficiency factor (0.45) if the side face 
reinforcement requirement (0.18%) is not satisfied OR the concrete 
efficiency factor as shown in Table 5.8.2.5.3a-1 if the side face 
reinforcement requirement (0.18%) is satisfied, in accordance with 
Article 5.10.6  

 
Table 5.8.2.5.3a-1—Efficiency Factors for Nodes with Crack Control 
Reinforcement (AASHTO LRFD, 2020) 

 Node Type 
Face CCC CCT CTT 
Bearing Face 0.85 0.70 

0.85 −
𝑓𝑓𝑐𝑐′

20 𝑘𝑘𝑘𝑘𝑘𝑘
 

0.45 ≤ 𝑚𝑚 ≤ 0.65 

Back Face 

Strut-to-Node 
Interface 

0.85 −
𝑓𝑓𝑐𝑐′

20 𝑘𝑘𝑘𝑘𝑘𝑘
, 

 0.45 ≤ 𝑚𝑚 ≤ 0.65 
 

 𝑓𝑓𝑐𝑐′ = compressive strength of concrete for use in design [ksi] 

𝐴𝐴𝑐𝑐𝑛𝑛 = effective cross‐sectional area of the node faces as specified in Article 
5.8.2.5.2; and in Figure 4.3 [in.2] 
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 Anchorage for Ties 

4.4.1. Horizontal Ties (Top and Bottom Mat Reinforcement) 

4.4.1.1. At Singular Nodes 
Based on the determined 3D nodal geometry at singular nodes, the 
recommendations employed a similar approach using the extended nodal zone to 
define the critical section. Figure 4.5 illustrates the extended nodal zone in a 3D 
strut-and-tie model projected on the plane parallel to the tie. The critical section for 
the development of a tie is at the point where the centroid of the tie intersects the 
edge of the diagonal strut. Therefore, the available development length can be 
computed based on the geometry. The reinforcing bars can be sufficiently 
developed by satisfying the anchorage requirement, providing an available 
development length greater than the required development length. 

 
Figure 4.5 Critical section for bottom mat reinforcement in drilled shaft footings (at 

singular nodes) 
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4.4.1.2.  At Smeared Nodes 
The recommended extended nodal zone approach cannot be used at smeared nodes, 
for which the nodal geometry cannot be clearly defined. Therefore, the critical 
section of the tie at a smeared node is determined conservatively at the point 
directly above the interior edge of the equivalent square drilled shaft, as Williams 
et al. (2012) proposed. 

 
Figure 4.6 Critical section for bottom mat reinforcement in drilled shaft footings (at 

smeared nodes) 

 

4.4.2. Vertical Ties (Column and Drilled Shaft Reinforcement) 

4.4.2.1. Axial Compression Combined with Moderate Uniaxial Flexure 
The 3D strut-and-tie model resulting from axial compression combined with 
moderate uniaxial flexure has vertical column tie elements connected to smeared 
nodes in the footing. Therefore, the critical section for the column ties cannot also 
be determined using the corresponding nodal geometry. Instead, a large 
compression field bounded by diagonal struts flowing down to the drilled shafts is 
considered to perform the same role as an extended nodal zone for establishing the 
critical section of the column tie elements, as shown in Figure 4.7. The available 
length of the column reinforcement can be determined based on the defined critical 
section. When hooked anchorage is employed for the column reinforcement, the 
hook needs to be oriented inwards to react against the diagonal strut flowing down 
from the compression face of the column to activate its bearing action. 
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Figure 4.7 Critical section for column reinforcement in drilled shaft footings under Load 

Case III 

4.4.2.2. Axial Compression Combined with Large Uniaxial Flexure 
Due to the large flexure inducing tension at one face of the column and two of four 
drilled shafts, the anchorage checks for the vertical column tie elements, connected 
with smeared nodes, also need to be performed. Therefore, a large compression 
field between the column and drilled shaft tie elements was proposed to represent 
the force transfer mechanism between the tie elements, which resembles a non-
contact lap splice behavior. The field is determined by the minimum strut angle 
specified in AASHTO LRFD (2020), 25 degrees, as illustrated in Figure 4.8. Hence, 
the critical sections for the column and drilled shaft reinforcement can be defined 
based on the compression field. In determining the available lengths for the column 
and drilled shaft reinforcement, the column reinforcement is assumed to be placed 
above the bottom mat reinforcement to facilitate constructability. Similarly, the 
drilled shaft reinforcement is assumed to extend up to the bottom layer of the top 
mat reinforcement. 

 
Figure 4.8 Critical section for column and drilled shaft reinforcement in drilled shaft 

footings under Load Case IV 
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Chapter 5. Refined Design Recommendations: 
Biaxial Load Scenarios 

The 3D-STM recommendations for drilled shaft footings proposed by Yi et al. 
(2022) were used for the design examples of footings subjected to specific load 
scenarios. Those load scenarios were verified experimentally (Load Cases I, III, 
and IV in Figure 3.1) or resulted in simple strut-and-tie configurations (Load Cases 
II and V in Figure 3.1). However, the load cases involving biaxial flexural loading, 
which this research is interested in, have not been studied in detail, as summarized 
in Chapter 2. In particular, the 3D strut-and-tie model for drilled shaft footings 
under extremely complicated loading conditions inducing tension at one of four 
drilled shafts (axial compression combined with considerable biaxial flexure) has 
not been investigated.  

Therefore, this section presents the modifications to the design recommendations 
proposed by Yi et al. (2022) for applying the 3D-STM to the design of drilled shaft 
footings under axial compression combined with moderate and large biaxial 
flexural loading.  

 Develop 3D Strut-and-Tie Model 

5.1.1. Equivalent Force System 
Yi et al. (2022) recommended that the equivalent force system of the column 
section partially under tension due to flexural loading be established by the actual 
stress distribution based on the applied loading to maintain the consistency of force 
flow between a B-region and a D-region. In the cases with uniaxial flexural loading 
(Load Case III and IV in Figure 3.1), the stress block factors proposed by Collins 
and Mitchell (1991) can be used to cover both linear and nonlinear behavior of the 
concrete. Further, the neutral axis becomes inclined owing to biaxial flexure. The 
inclined neutral axis determines a group of column reinforcement carrying column 
tie forces (reinforcing bars placed within the white-colored region in Figure 5.1). 
Therefore, a sectional analysis based on the linear strain distribution and 
constitutive relationships needs to be performed to clarify resultant forces at the 
column-footing interface. Three unknowns—neutral axis inclination (𝜃𝜃), neutral 
axis depth (𝑐𝑐), and extreme compressive fiber strain (𝜀𝜀𝑐𝑐)—can be derived from 
three equilibrium equations ( ∑𝑃𝑃𝑐𝑐 = 0; ∑𝑀𝑀𝑐𝑐𝑢𝑢 = 0; ∑𝑀𝑀𝑐𝑐𝑦𝑦 = 0 ) through an 
iterative process. Figure 5.1 presents the strain and stress distribution of the column 
section in the elastic state under the biaxial flexural loading. 
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Figure 5.1 Strain and stress distribution over the column section under biaxial flexural 

loading and types of compressive region shape 

In the 3D strut-and-tie models employed in the design example of Yi et al. (2022), 
the resultant forces at the interface were subdivided into four force components to 
proportion the optimal amount of the bottom mat reinforcement and perform nodal 
capacity checks at CCC nodes. The subdivided nodes should be compatible with 
the reactions at four drilled shafts and satisfy force and moment equilibriums at the 
interface. Accordingly, subdividing resultant forces should consider the internal 
force flow of the footing and actual stress distribution at the interface, which are 
challenging for the scenarios with biaxial flexure loading. The different shape of 
the compressive region at the interface (Figure 5.1) further complicates the 
procedure; therefore, designers should put in significant computational effort even 
when designing a drilled shaft footing for one biaxial flexural load case using the 
equivalent force system, comprising two struts and two ties. Since a drilled shaft 
footing is designed with many biaxial flexural load cases, it is not practical to 
establish an equivalent force system comprising multiple force components. 

Based on this fact, the research team proposes using an equivalent force system 
consisting of a single compressive force and a single tensile force. This approach 
decreases the strut inclinations and results in an increase in strut and tie forces 
relative to those obtained from the equivalent force system with multiple struts and 
ties, leading to a conservative design of drilled shaft footings. Under this equivalent 
force system, the vertical strut is positioned at the resultant compressive force, 
while the tie is at the resultant tensile force. The exact locations at the interface are 
derived from the sectional analysis. To simplify the procedure, the tensile capacity 
of the concrete and compressive reinforcement contribution are neglected, and only 
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the column reinforcing bars at two adjacent tensile column faces are considered for 
the sectional analysis to determine the equivalent force system. 

5.1.2. 3D Strut-and-Tie Model 

5.1.2.1. LC6: Axial Force Combined with Moderate Biaxial Flexure 
Figure 5.2 presents the 3D strut-and-tie model for drilled shaft footings under axial 
force combined with moderate flexural loading. The recommendations regarding 
nodal elevations of the 3D strut-and-tie model remain the same as those 
summarized in Section 4.1. 

 
Figure 5.2 3D strut-and-tie model for drilled shaft footing under Load Case VI 

The resultant compressive force of the established equivalent force system is 
transmitted through four diagonal struts (Struts AC, AD, AE, and AF in Figure 5.2) 
spreading from the CCC node to the four drilled shafts, respectively. A tie ring 
(Ties CD, DE, EF, and CF in Figure 5.2) is necessary to resist the lateral force 
component of the diagonal struts. A vertical column tie (Tie BB' in Figure 5.2) 
representing the resultant tensile force of the equivalent force system extends down 
to the plane of the bottom tie ring. To satisfy the vertical force equilibrium, an 
additional diagonal strut (Strut AB in Figure 5.2) is provided, connecting the CCC 
node and the bottom end node of the column tie element. The diagonal struts (Struts 
BC, BE, and BF in Figure 5.2) on the horizontal plane of the bottom tie ring are 
required to satisfy the horizontal force equilibrium at the CTT nodes. The 
configuration of the 3D strut-and-tie model is almost the same as that proposed by 
Ballestrino et al. (2011) (Figure 2.2). However, the internal force flow of drilled 
shaft footings subjected to the biaxial flexural loading cases is no longer symmetric. 
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Therefore, the configuration of the diagonal struts for the horizontal force 
equilibrium is not fixed but varies depending on the footing geometry and 
equivalent force system, as illustrated in Figure 5.3.  

 
Figure 5.3 Two different configurations of horizontal struts on the bottom tie ring plane 

5.1.2.2. LC7: Axial Force Combined with Large Biaxial Flexure 
The biaxial flexural loading induces tension at one of four drilled shafts and has the 
most complicated internal force flow among the loading scenarios. The 3D strut-
and-tie model for this biaxial load case has not been investigated so far. The 
research team developed a simplified 3D strut-and-tie model to understand the 
internal force flow of drilled shaft footings resulting from this extreme biaxial 
flexural loading condition, as shown in Figure 5.4. 
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Figure 5.4 Simplified 3D strut-and-tie model for drilled shaft footing under Load Case VII 

One tensile and the other three compressive reactions at the four drilled shafts are 
carried by the resultant compressive force at the equivalent force system through 
one diagonal tie (Tie AE in Figure 5.4) and three diagonal struts (Struts AC, AD, 
and AF in Figure 5.4), respectively. The vertical column tie (Tie BB' in Figure 5.4) 
resulting from the tensile resultant force of the equivalent force system is also 
carried by the resultant compressive force through a diagonal strut (Strut AB in 
Figure 5.4). All of the aforementioned diagonal elements are connected to the CCC 
node beneath the column (Node A in Figure 5.4), and their lateral force components 
satisfy the equilibrium. Similarly, the horizontal elements (Ties BG, CG, DG, and 
FG and Strut EG in Figure 5.4) placed on the bottom tie ring plane are required to 
satisfy the equilibrium at the nodes above drilled shafts (Nodes C through F in 
Figure 5.4). Those elements also meet at the node (Node G in Figure 5.4) where the 
CCC node is projected on the bottom tie ring plane and satisfy the equilibrium at 
Node G. 

 
Figure 5.5 3D strut-and-tie models with a truss panel to transfer drilled shaft tie force 
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A triangular truss panel for transmitting the tensile reaction is substituted with a 
single rectangular truss panel (Figure 5.5a), which indicates that the truss panels of 
the column tie force transfer mechanism and of the drilled shaft tie force mechanism 
do not overlap each other. Nevertheless, the force transfer mechanism representing 
the non-contact lap splice behavior between the drilled shaft reinforcement and 
some column reinforcing bars (Tie IJ in Figure 5.5b) can be identified from the 
model expressed with two rectangular truss panels (Figure 5.5b). However, 
subdividing the column tie element into two ties requires computational effort, as 
described in Section 5.1.1. 

 
Figure 5.6 Idealized 3D strut-and-tie model for drilled shaft footing under Load Case VII 

Figure 5.6 presents an idealized 3D strut-and-tie model by disassembling the 
diagonal ties in Figure 5.4 into orthogonal ties to facilitate designing the top and 
bottom mat reinforcement. Unlike the simplified model, the planes of the column 
and tie force transfer mechanisms are integrated together in the idealized model, 
and this discrepancy leads to inequilibrium at the CTT node of the drilled shaft 
under tension (Node E in Figure 5.6). The error caused by the inequilibrium can be 
estimated by shifting the nodal position of Node E to satisfy the equilibrium. The 
externally applied moments are compared with those estimated from the reactions 
of the shifted nodal position. The error was estimated in the design example covered 
in Section 6.2.2 and was found to be insignificant, at less than 1.0% (0.6%). 
Furthermore, the strut that induces the inequilibrium (Strut BE in Figure 5.6) is not 
used for the nodal strength checks; therefore, the inequilibrium problem does not 
greatly impact the design procedure. 

One more thing that needs to be considered in the idealized model is positioning 
the top nodes (Nodes G1, G2, ... and Gn in Figure 5.6) for the top tie elements. 
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Whereas the 3D strut-and-tie model of the uniaxial flexural case resulting in tension 
at two of four drilled shafts has a rectangular-shaped top tie ring owing to the 
symmetric configuration of the model, the 3D strut-and-tie model of the biaxial 
flexural case inducing tension at one drilled shaft is no longer symmetric. The 
lateral force component of the diagonal strut representing the non-contact lap splice 
behavior (Strut BI in Figure 5.6) is transferred to the CCC node underneath the 
column through a top tie ring (Ties GnH, HI, IJ, and G1J in Figure 5.6) and 
horizontal struts stemming from the corners of the top tie ring (Struts AH, AJ, and 
AG1 ... AGn in Figure 5.6). The second and third top nodes comprising the top tie 
ring (Nodes H and J in Figure 5.6) are positioned on the center axes of two drilled 
shafts adjacent to the drilled shaft under tension. On the other hand, the fourth node 
cannot be positioned on the center axis of the drilled shaft to transfer the tie forces 
and satisfy the equilibrium at Node A. Instead, a series of struts and ties are required 
to be formed near the corner; however, determining the number of nodes to be 
provided and their nodal positions for satisfying the requirements is overly 
complicated. Therefore, since the strut-and-tie model configuration near the corner 
varies significantly depending on the applied loading, the force component of each 
strut and tie in this region is not considered. Nevertheless, the drilled shaft footing 
design based on the idealized model is made possible by resolving the widespread 
struts (Struts AG1 ... AGn in Figure 5.6) into a single diagonal strut (Strut AG) 
whose force can be derived from the equilibrium at Node A. The top mat 
reinforcement can also be designed from the orthogonal ties (Ties GnH, HI, IJ, and 
G1J in Figure 5.6) of the model. 

 Perform Nodal Strength Check at CCC Node 

5.2.1. Modified Equivalent Square Bearing Face 
Before describing the proposed approach to defining the CCC nodal bearing face 
under the biaxial loading scenarios that cause tension in the column section, the 
research team reviewed the assumptions used to define the CCC nodal bearing face 
for the other loading scenarios. The approaches employed to develop the 
recommendations of Yi et al. (2022) for defining the bearing faces of the CCC node 
in the drilled shaft footings under various load conditions are summarized below. 
 
For a load case in which the entire column section is subjected to compression, the 
column section is subdivided into four sections based on the actual stress 
distribution according to the determined equivalent force system. Each of these 
subdivided sections becomes the bearing face of the CCC node. The bearing faces 
could have complex shapes depending on the load case (Load Case V in Figure 3.1); 
therefore, each subdivided section is replaced with an equivalent square bearing 
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face to develop the proposed 3D nodal geometry. Each equivalent bearing face is 
considered to be subjected to uniformly distributed stress, regardless of the actual 
stress distribution, when estimating its nodal strength. This approach is reasonable 
since the entire column section is under compression, and the sum of the capacities 
of the equivalent bearing faces is identical to the bearing capacity of the entire 
column section. 

On the other hand, the dimension of the bearing face of the CCC node is determined 
based on the actual stress distribution when tensile stresses act on the part of the 
column section due to flexure. For the continuously changing neutral axis, Yi et al. 
(2022) defined the bearing face of the CCC node conservatively using the 
compressive stress block region, which is smaller than the actual compressive 
region over the column section, determined by equivalent stress block factors 
proposed by Collins and Mitchell (1992). This approach is limited to the uniaxial 
load cases (Load Case III and IV in Figure 3.1) since the equivalent stress factors 
were not verified for the cases with biaxial flexural loading. The nodal strength 
check was performed based on the 3D nodal geometry developed using the 
rectangular-shaped bearing face of the CCC node. 

However, the two aforementioned approaches cannot be directly applied to the 
scenarios with biaxial loading in this research because not only is the entire column 
section not subjected to compression, but the shape of the compressive region 
changes depending on the applied load. Furthermore, the equivalent stress block 
factors verified only for the cases under uniaxial flexural loading cannot be used. 
As an alternative, in this study, the bearing face of the CCC node is defined through 
a conservative approach. We assumed that the maximum stress value of the 
compressive stress region over the column section derived from the sectional 
analysis (𝑓𝑓𝑐𝑐 in Figure 5.1) is uniformly distributed over the bearing face of the CCC 
node. Therefore, a modified bearing area of the CCC node can be obtained by 
dividing the resultant compressive force by the maximum stress value. After that, 
the modified bearing area is replaced with an equivalent square-shaped bearing face 
to cover the varying compressive region of the column section under the biaxial 
flexural loading (Figure 5.1). Consequently, the derived square-shaped bearing face 
is much smaller than the actual area of the compressive region but results in a much 
simpler and conservative estimate of the CCC nodal strength. The research team 
defined this simplified bearing face of the CCC node as the modified equivalent 
square bearing face.  

Nevertheless, the confinement modification factor described in Section 4.3.1 is 
determined based on a square bearing face, equivalent to the actual compressive 
area derived from the sectional analysis. As illustrated in Figure 5.7, this approach 
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leads to a conservative design compared to the confinement modification factors 
determined from the equivalent square bearing face and actual compressive area. 

 
Figure 5.7 Comparison of approaches defining confinement modification factor 

Table 5.1 summarizes the approaches employed to define the bearing faces of the 
CCC node in drilled shaft footings under different loading scenarios. 

 

Table 5.1 Different approaches for defining bearing face of CCC node in drilled 
shaft footings depending on loading scenario 

 Load Case I Load Case II Load Case III Load Case IV 

Load 
Combination Axial Compression Axial Compression + 

Mild Uniaxial Flexure 

Axial Compression + 
Moderate Uniaxial 

Flexure 

Axial Compression + 
Large Uniaxial Flexure 

Compressive 
Stress 

Distribution 
Uniform Linear/Nonlinear 

Uniform 
(Equivalent stress 

block) 

Uniform 
(Equivalent stress 

block) 
Shape of 

Compressive 
Region 

Entire Section Entire Section Partial 
(Rectangular) 

Partial 
(Rectangular) 

Approach for 
Bearing Face 

of CCC 
Node 

Equivalent 
Square Bearing Face 

Equivalent 
Square Bearing Face 

Equivalent Stress 
Block 

Equivalent Stress 
Block 

 Load Case V Load Case VI Load Case VII  

Load 
Combination 

Axial Compression + 
Mild Biaxial Flexure 

Axial Compression + 
Moderate Biaxial 

Flexure 

Axial Compression + 
Large Biaxial Flexure  

Compressive 
Stress 

Distribution 
Linear/Nonlinear Linear/Nonlinear Linear/Nonlinear  

Shape of 
Compressive 

Region 
Entire Section Partial 

(3 Different types) 
Partial 

(3 Different types)  

Approach for 
Bearing Face 

of CCC 
Node 

Equivalent 
Square Bearing Face 

Modified Equivalent 
Square Bearing Face 

Modified Equivalent 
Square Bearing Face  
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5.2.2. Development of 3D Nodal Geometry 
Under the proposed equivalent force system, the 3D strut-and-tie model has only 
one CCC node connected with multiple struts acting in different directions. The 
diagonal struts must be resolved to reduce the number of force components acting 
at the CCC node to three for developing the 3D nodal geometry proposed by Yi et 
al. (2022). However, when struts acting at only one CCC node are resolved to a 
single strut, its lateral force component converges to be zero. Hence, it is impossible 
to develop the 3D nodal geometry without additional modification. A bent cap 
design example using the 2D STM proposed by Williams et al. (2012) subdivided 
a node connected with multiple struts in opposite directions to develop the nodal 
geometry to address a similar problem. The node was subdivided based on the ratio 
of the vertical force components of the struts acting in the opposite direction, as 
shown in Figure 5.8. 

 
Figure 5.8 Subdividing struts acting at CCC node to develop 3D nodal geometry 

The research team also subdivided the CCC node of the 3D strut-and-tie models for 
the scenarios with biaxial loading to develop its 3D nodal geometry. The forces 
acting at the CCC node are subdivided into two groups based on the diagonal 
sectional plane of the footing connecting the drilled shafts under the largest and 
smallest reaction forces. The diagonal struts in the vicinity of this plane are 
disassembled by the ratio of the reaction forces acting on the other two drilled shafts, 
and the struts in each group are resolved into a single diagonal strut. The width of 
the resultant compressive force and the modified equivalent square bearing face of 
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the CCC node is also subdivided by the ratio of the reaction force acting on those 
two drilled shafts. As a result, three force components (subdivided resultant 
compressive force, resolved diagonal strut, and lateral force component of the 
resolved diagonal strut) act at the two subdivided CCC nodes. Therefore, the 3D 
nodal geometries of those two subdivided CCC nodes can be developed based on 
the specified dimensions, as illustrated in Figure 5.9 and Figure 5.10. 

 

 
Figure 5.9 Development of 3D nodal geometry for CCC node in drilled shaft footing under 

Load Case VI 
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Figure 5.10 Development of 3D nodal geometry for CCC node in drilled shaft footing 

under Load Case VII 
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Chapter 6. Design Example 

 Summary of Previously Published Design Example 

6.1.1. Drilled Shaft Footing Geometry 

 
Figure 6.1 Geometry of the drilled shaft footing for the design example (Williams et al., 

2012) 
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The design example of TxDOT 0-6953 (Yi et al., 2022) is a drilled shaft footing 
with the same geometry as Williams et al. (2012). The 16-foot-square drilled shaft 
footing is 5 feet tall and supported by four 4-foot-diameter drilled shafts, with a 
span of 10.50 feet. The footing has a rectangular column with a dimension of 7.50 
by 6.25 feet. The footing and the column are doubly symmetric with respect to x- 
and y-axes, as illustrated in Figure 6.1. 

6.1.2. Load Cases 
The drilled shaft footing of the design example of Yi et al. (2022) has five different 
loading scenarios. Figure 6.2 shows the factored load combinations of the five 
loading scenarios. 

 
Figure 6.2 Factored load combinations used for design example of Yi et al. (2022) 

6.1.3. Designed Reinforcement Detail 
The reinforcement details designed from the five loading scenarios are summarized 
in Table 6.1.  
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Table 6.1 Summary of reinforcement designed with Load Case I through V 

 Reinforcement 
Amount 

Anchorage 
Detail 

Governing 
Load Case 

Bottom Mat 
Reinforcement 38-No.11 @ 5.00 in. Straight Load Case I 

Top Mat 
Reinforcement 20-No.6 @ 10.00 in. Straight Minimum 

Shrinkage and 
Temperature 

Reinforcement 
(0.18%) 

Vertical Side Face 
Reinforcement 20-No.6 @ 10.00 in. 90-Degree Hook 

Horizontal Side Face 
Reinforcement 5-No.6 @ 10.00 in. 90-Degree Hook 

Column 
Reinforcement 44-No.11 90-Degree Hook N/A* 

Drilled Shaft 
Reinforcement 

4-No.9 
(Embedded in footing) 

180-Degree 
Hook Load Case IV 

*Column reinforcement layout is already given  

 Design Task 
To supplement the design example of Yi et al. (2022), the research team designed 
the same drilled shaft footing with two additional biaxial loading scenarios using 
the proposed design guidelines. Therefore, the research team used the same 
concrete compressive strength (𝑓𝑓𝑐𝑐′ = 3.6 ksi) and yield strength of reinforcement 
(𝑓𝑓𝑦𝑦 = 60 ksi) as those of the previous design example. 

One of the reviewed in-practice drilled shaft footings (Footing A in Table 3.1) has 
the same geometry as the footing designed in this section. Therefore, the extreme 
biaxial load cases classified as Load Case VI and VII (refer to Figure 3.1) are 
selected for the design example. 

Based on the refined design recommendations introduced in Chapter 5, the drilled 
shaft footing is designed with a biaxial flexural loading following the general STM 
procedure below: 

Step 1: Determine loads 

Step 2: Analyze structural components 

Step 3: Develop strut-and-tie model 

Step 4: Proportion ties 

Step 5: Perform strength checks 

Step 6: Proportion the shrinkage and temperature reinforcement 

Step 7: Provide necessary anchorage for ties  
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6.2.1. Design Calculations: Load Case VI 
Figure 6.3 illustrates the factored load case where the column is subjected to axial 
compression combined with moderate biaxial flexure. This loading combination 
leads to tension at one corner of the column and non-uniform compression in drilled 
shafts. 

 
Figure 6.3 Factored load: Load Case VI 

6.2.1.1. Step 1: Determine the Loads 
Based on the given loading combination, a sectional analysis is conducted to 
determine the equivalent force system over the column section. Three unknowns 
(neutral axis depth (𝑐𝑐); neutral axis inclination (𝜃𝜃); and extreme compressive fiber 
strain (𝜀𝜀𝑐𝑐 )) are derived from three equilibrium equations (∑𝑃𝑃𝑐𝑐 = 0; ∑𝑀𝑀𝑐𝑐𝑢𝑢 =
0; ∑𝑀𝑀𝑐𝑐𝑦𝑦 = 0) through an iterative process. The calculation procedure is provided 
in Appendix A. Figure 6.4 presents the derived strain and stress distribution over 
the column section, and the compressive and tensile resultant forces of the section 
determines the equivalent force system.  
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Figure 6.4 Stress distribution over the column section: Load Case VI 

6.2.1.2. Step 2: Analyze Structural Component 
The reaction forces in drilled shafts can be derived from the equilibrium conditions 
of the external loading. Figure 6.5 presents the results of the structural analysis.  

    𝑅𝑅1 = 𝑃𝑃𝑢𝑢
4

+ 1
2
� 𝑀𝑀𝑢𝑢𝑢𝑢
𝑆𝑆𝐷𝐷𝐷𝐷,𝑢𝑢

� + 1
2
� 𝑀𝑀𝑢𝑢𝑢𝑢

𝑆𝑆𝐷𝐷𝐷𝐷,𝑢𝑢
�  

= 1656 kip
4

+ 1
2
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2
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    𝑅𝑅2 = 𝑃𝑃𝑢𝑢
4
− 1

2
� 𝑀𝑀𝑢𝑢𝑢𝑢
𝑆𝑆𝐷𝐷𝐷𝐷,𝑢𝑢

� + 1
2
� 𝑀𝑀𝑢𝑢𝑢𝑢
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− 1
2
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2
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� = 520.2 kip (Compression) 
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    𝑅𝑅3 = 𝑃𝑃𝑢𝑢
4
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2
� 𝑀𝑀𝑢𝑢𝑢𝑢
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� − 1
2
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�  
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− 1
2
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2
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    𝑅𝑅4 = 𝑃𝑃𝑢𝑢
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� − 1
2
� 𝑀𝑀𝑢𝑢𝑢𝑢
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�  
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4

+ 1
2
�1440 k−ft
10.50 ft

� − 1
2
�3670 k−ft
10.50 ft

� = 170.7 kip (Compression) 
 
 

 
Figure 6.5 Applied loading and reaction forces: Load Case VI 

6.2.1.3. Step 3: Develop Strut-and-Tie Model 
The research team developed a 3D strut-and-tie model corresponding to the applied 
loading condition following the basic principle of the 3D STM specified in Section 
5.1.2.1. The strut-and-tie configuration on the bottom plane of this design example 
is different from that of Ballestrino et al. (2011). This difference results from the 
discrepancy between lateral force components of the diagonal struts flowing down 
to drilled shafts. As illustrated in Figure 6.6, the y-directional lateral force 
component of Strut AD is higher than that of Strut AC; therefore, a horizontal strut 
(Strut BC) must be connected to Node C to satisfy the equilibrium.  
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Based on the strut-and-tie model configuration, strut forces and tie forces satisfying 
the equilibrium of each axis at each node can be computed, as shown in Figure 6.7 
and Figure 6.8. The calculation procedure to derive the elemental forces is provided 
in Appendix B.   

 

 
Figure 6.6 Determination of the strut-and-tie model configuration: Load Case VI 
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Figure 6.7 3D strut-and-tie model (plan view): Load Case VI 

 

 
Figure 6.8 3D strut-and-tie model (axonometric view): Load Case VI  
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6.2.1.4. Step 4: Proportion Ties 
The required number of No. 11 reinforcing bars for the bottom mat reinforcement 
can be estimated from the computed bottom tie forces. Furthermore, the researchers 
examined the capacity of the column-reinforcing bars in the tension side of the 
column to verify whether they can carry the computed column tie force based on 
the given column reinforcement layout and the derived stress distribution over the 
column section.  

 Tie CD (Bottom Mat Reinforcement) 

Factored tie force: 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 = 772.8 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑡𝑡 = 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑡𝑡 = 772.8 kip 
𝐴𝐴𝑠𝑠𝑡𝑡 = 14.31 in.2 

Number of No. 11 bars required: 14.31 in.2
1.56 in.2� = 10 bars 

 Tie DE (Bottom Mat Reinforcement) 

Factored tie force: 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 = 420.7 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑡𝑡 = 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑡𝑡 = 420.7 kip 
𝐴𝐴𝑠𝑠𝑡𝑡 = 7.79 in.2 

Number of No. 11 bars required: 7.79 in.2
1.56 in.2� = 5 bars 

 Tie EF (Bottom Mat Reinforcement) 

Factored tie force: 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 = 454.2 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑡𝑡 = 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑡𝑡 = 454.2 kip 
𝐴𝐴𝑠𝑠𝑡𝑡 = 8.41 in.2 

Number of No. 11 bars required: 8.41 in.2
1.56 in.2� = 6 bars 

 Tie CF (Bottom Mat Reinforcement) 

Factored tie force: 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 = 587.6 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑡𝑡 = 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑡𝑡 = 587.6 kip 
𝐴𝐴𝑠𝑠𝑡𝑡 = 10.88 in.2 

Number of No. 11 bars required: 10.88 in.2
1.56 in.2� = 7 bars 
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 Tie BB' (Column Reinforcement) 

Factored tie force: 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 = 80.2 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑡𝑡 = 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑡𝑡 = 80.2 kip 
𝐴𝐴𝑠𝑠𝑡𝑡 = 1.49 in.2 

Number of No. 11 bars required: 1.49 in.2
1.56 in.2� = 1 bars  

(18 bars are under tension) 

As summarized in Table 6.1, the bottom mat reinforcement determined in Load 
Case I (19 bars per tie element) still governs the design. In addition, the column 
reinforcing bars under tension are sufficient to carry the column tie force. 

6.2.1.5. Step 5: Perform Strength Checks 
The nodal strength checks for one CCC node (Node A in Figure 6.8) and four CTT 
nodes (C, D, E, and F) are performed in this step. Whereas the nodal strength check 
procedure for the CTT nodes is identical to that of Yi et al. (2022), that of the CCC 
node is performed following the proposed design procedure of this research owing 
to the single strut-based equivalent force system. 

• Node A (CCC node) 
The extreme compressive fiber stress and resultant compressive force over the 
column section derived from the sectional analysis are used to develop the modified 
equivalent square-shaped bearing face of the CCC node that is proposed in this 
research. The area of the modified equivalent square bearing face (𝐴𝐴𝑚𝑚𝑐𝑐) and its 
width (𝑊𝑊𝑡𝑡𝑒𝑒) can be derived from the below equation. It is much smaller than that 
of the actual compressive region (𝐴𝐴𝑐𝑐) of the column, as depicted in Figure 6.9. The 
area represents the conservativeness of the proposed approach to perform the nodal 
capacity check for the CCC node. 

 

𝐴𝐴𝑚𝑚𝑐𝑐 =
𝐹𝐹𝐴𝐴
𝑓𝑓𝑐𝑐

=
1736.2 kip

1.05 ksi
= 1658 in.2 

𝑊𝑊𝑡𝑡𝑒𝑒 = �𝐴𝐴𝑚𝑚𝑐𝑐 = 40.7 in. 
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Figure 6.9 Derivation of modified equivalent square bearing face of CCC node (Node A): 

Load Case VI 

 
The diagonal struts acting at Node A are subdivided diagonally based on the 
reaction forces at Node D and F, as described in Section 5.2.2, to develop the nodal 
geometry of the CCC node, as follows: 

 Node D-side 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 = 𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑅𝑅𝐷𝐷

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (1115.6) �

520.2
520.2 + 307.8�

= 700.9 kip 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 = 𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑅𝑅𝐷𝐷

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (431.5) �

520.2
520.2 + 307.8�

= 271.1 kip 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 = 𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑅𝑅𝐷𝐷

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (134.0) �

520.2
520.2 + 307.8�

= 84.2 kip 

 

 Node F-side 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹 = 𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑅𝑅𝐹𝐹

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (1115.6) �

307.8
520.2 + 307.8�

= 414.7 kip 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹 = 𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑅𝑅𝐹𝐹

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (431.5) �

307.8
520.2 + 307.8�

= 160.4 kip 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹 = 𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑅𝑅𝐹𝐹

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (134.0) �

307.8
520.2 + 307.8�

= 49.8 kip 
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Similarly, the resultant compressive force and the modified bearing face are also 
subdivided into two components (Figure 6.10). The subdivided compressive forces 
are applied to the centroid of each subdivided bearing face, and the centroids are 
considered to be subdivided nodes of the CCC node (Nodes 𝐴𝐴𝐷𝐷 and 𝐴𝐴𝐹𝐹). 

 
Figure 6.10 Subdivided bearing face of CCC node (Node A): Load Case VI 

𝐹𝐹𝐴𝐴,𝐷𝐷 = 𝐹𝐹𝐴𝐴 �
𝑅𝑅𝐷𝐷

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (1736.2) �

520.2
520.2 + 307.8�

= 1090.7 kip 

𝐹𝐹𝐴𝐴,𝐹𝐹 = 𝐹𝐹𝐴𝐴 �
𝑅𝑅𝐹𝐹

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (1736.2) �

307.8
520.2 + 307.8�

= 645.4 kip 

𝑊𝑊𝑡𝑡𝑒𝑒,𝐷𝐷 = 𝑊𝑊𝑡𝑡𝑒𝑒
𝐹𝐹𝐴𝐴,𝐷𝐷

𝐹𝐹𝐴𝐴
= (40.7) �

1090.7
1736.2�

= 25.6 in. 

𝑊𝑊𝑡𝑡𝑒𝑒,𝐹𝐹 = 𝑊𝑊𝑡𝑡𝑒𝑒
𝐹𝐹𝐴𝐴,𝐹𝐹

𝐹𝐹𝐴𝐴
= (40.7) �

645.4
1736.2�

= 15.1 in. 

The two subdivided groups of internal forces are resolved into two diagonal struts 
(𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 and 𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹). 

 Strut 
Force component*, kip Strut Force, kip 

(�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) 𝑥𝑥 𝑦𝑦 𝑧𝑧 

Node D-side 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 -334.0 457.3 413.0 700.9 
𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 191.3 -159.3 107.2 271.1 
𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 62.1 -26.7 50.4 84.2 
𝐹𝐹𝐴𝐴𝐷𝐷 -420.7 -772.8 520.2 1022.2 

Resolved 
Strut 𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 -501.5 -501.5 1090.8 1301.0 

Strut Angle (atan(𝑧𝑧/�𝑥𝑥2 + 𝑦𝑦2)), DEG 57.0 
*The sign of a number is based on the coordinate specified in Figure 6.8 
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 Strut 
Force component*, kip Strut Force, kip 

(�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) 𝑥𝑥 𝑦𝑦 𝑧𝑧 

Node F-side 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹 -197.6 270.6 244.4 414.7 
𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹 113.2 -94.3 63.4 160.4 
𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 36.7 -15.8 29.8 49.8 
𝐹𝐹𝐴𝐴𝐹𝐹 549.2 340.9 307.8 716.0 

Resolved 
Strut 𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹 501.5 501.5 645.4 958.9 

Strut Angle (atan(𝑧𝑧/�𝑥𝑥2 + 𝑦𝑦2)), DEG 42.3 
*The sign of a number is based on the coordinate specified in Figure 6.8 

 

Therefore, each subdivided node is subjected to three force components: 
subdivided resultant compressive force, resolved diagonal strut, and horizontal 
force component of the resolved diagonal strut. Following the design 
recommendations of Yi et al. (2022), the 3D nodal geometry of two subdivided 
nodes can be developed based on the specified dimensions, as depicted in Figure 
6.11, Figure 6.13, and Figure 6.14. 

 
Figure 6.11 Subdivided and resolved internal forces to develop 3D nodal geometry of 

CCC node: Load Case VI 

The triaxial confinement factor, m, can be computed from the equivalent square 
bearing face with the same area of the actual compressive region of the column 
section (Figure 6.12). The center of the assumed bearing area coincides with the 
resultant compressive force position derived from the sectional analysis described 
in Section 6.2.1.1. 
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Figure 6.12 Determination of confinement modification factor, m, for Node A: Load Case VI 

 

𝑚𝑚 = �
𝐴𝐴2
𝐴𝐴1

 = �12.05 × 12.05
5.51 × 5.51

= 2.19 ≤ 3       ∴ se 𝑚𝑚 = 2.19 

 
Concrete efficiency factor, 𝑚𝑚, is determined in accordance with Table 5.8.2.5.3a-1 
of AASHTO LRFD (2020). The footing will be designed accordingly to satisfy the 
minimum side face reinforcement requirement (> 0.18%); therefore, the concrete 
efficiency factor does not have to decrease to 0.45.  

 

Figure 6.13 Details of 3D nodal geometry at Node AD: Load Case VI 
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NODAL STRENGTH AT BEARING FACE (Node AD) 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 1090.7 kip 

Concrete efficiency factor: 𝑚𝑚 = 0.85  

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (2.19)(0.85)(3.6 ksi) 
=  6.70 ksi 

Nodal capacity:  𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝑊𝑊𝑡𝑡𝑒𝑒𝑊𝑊𝑡𝑡𝑒𝑒,𝐷𝐷 
= (0.7)(6.70 ksi)(1042 in.2 ) 
= 4886.8 kip > 1090.7 kip     𝐎𝐎𝐎𝐎 

 NODAL STRENGTH AT BACK FACE (Node AD) 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 = 709.2 kip 

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 = 𝑊𝑊𝑡𝑡𝑒𝑒 ∙ 0.2𝐻𝐻 = (40.7 in. )(12.0 in. )  
= 489 in2  

Concrete efficiency factor: 𝑚𝑚 = 0.85  

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (2.19)(0.85)(3.6 ksi) 
=  6.70 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏  
= (0.7)(6.70 ksi)(489 in.2 ) 
= 2292.2 kip > 709.2 kip     𝐎𝐎𝐎𝐎 

 NODAL STRENGTH AT STRUT-TO-NODE INTERFACE (Node AD) 

Factored load: 𝐹𝐹𝑐𝑐,𝑆𝑆𝑆𝑆𝑆𝑆 = 1301.0 kip 

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑊𝑊𝑡𝑡𝑒𝑒 ∙ 𝐿𝐿𝑆𝑆 = (40.7 in. )(28.0 in. ) 
= 1140 in.2 

Concrete efficiency factor: 𝑚𝑚 = 0.85 − 𝑓𝑓𝑐𝑐′
20 ksi� = 0.85 − 3.6 ksi

20 ksi�  
   = 0.67 > 0.65          ∴ se 𝑚𝑚 = 0.65  

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (2.19)(0.65)(3.6 ksi) 
=  5.12 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 
= (0.7)(5.12 ksi)(1140 in2) 
= 4088.5 kip > 1301.0 kip     𝐎𝐎𝐎𝐎 
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Figure 6.14 Details of 3D nodal geometry at Node AF: Load Case VI 

 NODAL STRENGTH AT BEARING FACE (Node AF) 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 645.4 kip 

Concrete efficiency factor: 𝑚𝑚 = 0.85  

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (2.19)(0.85)(3.6 ksi) 
=  6.70 ksi 

Nodal capacity:  𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝑊𝑊𝑡𝑡𝑒𝑒𝑊𝑊𝑡𝑡𝑒𝑒,𝐹𝐹  
= (0.7)(6.70 ksi)(616 in.2 ) 
= 2891.6 kip > 645.4 kip     𝐎𝐎𝐎𝐎 

 NODAL STRENGTH AT BACK FACE (Node AF) 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 = 709.2 kip 

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 = 𝑊𝑊𝑡𝑡𝑒𝑒 ∙ 0.2𝐻𝐻 = (40.7 in. )(12.0 in. )  
= 489 in2  

Concrete efficiency factor: 𝑚𝑚 = 0.85  

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (2.19)(0.85)(3.6 ksi) 
=  6.70 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏  
= (0.7)(6.70 ksi)(489 in.2 ) 
= 2292.2 kip > 709.2 kip     𝐎𝐎𝐎𝐎 

 NODAL STRENGTH AT STRUT-TO-NODE INTERFACE (Node AF) 

Factored load: 𝐹𝐹𝑐𝑐,𝑆𝑆𝑆𝑆𝑆𝑆 = 958.9 kip 

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑊𝑊𝑡𝑡𝑒𝑒 ∙ 𝐿𝐿𝑆𝑆 = (40.7 in. )(19.1 in. ) 
= 776 in.2 
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Concrete efficiency factor: 𝑚𝑚 = 0.85 − 𝑓𝑓𝑐𝑐′
20 ksi� = 0.85 − 3.6 ksi

20 ksi�  
   = 0.67 > 0.65          ∴ se 𝑚𝑚 = 0.65  

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (2.19)(0.65)(3.6 ksi) 
=  5.12 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 
= (0.7)(5.12 ksi)(776 in2) 
= 2784.7 kip > 958.9 kip     𝐎𝐎𝐎𝐎 

• Node C (CTT Node) 
Figure 6.15 illustrates the dimension and applying forces after resolving struts AC 
and BC at Node C in three dimensions based on the proposed recommendations of 
this study. Two diagonal struts (𝐹𝐹𝐴𝐴𝐴𝐴 and 𝐹𝐹𝐴𝐴𝐴𝐴) are resolved into one diagonal strut 
as summarized in the following table. 

 Strut 
Force component*, kip Strut Force, kip 

(�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) 𝑥𝑥 𝑦𝑦 𝑧𝑧 

Diagonal 
struts 

𝐹𝐹𝐴𝐴𝐴𝐴 -531.7 728.0 657.3 1115.6 

𝐹𝐹𝐴𝐴𝐴𝐴 -55.9 44.9 0.0 71.7 

Resolved 
Strut 𝐹𝐹𝑐𝑐,𝐴𝐴 -587.6 772.8 657.3 1172.4 

Strut Angle (atan(𝑧𝑧/�𝑥𝑥2 + 𝑦𝑦2)), DEG 34.1 
*The sign of a number is based on the coordinate specified in Figure 6.8 

 

The confinement modification factor of the bottom nodes (Nodes C through F) is 
1.55 as illustrated in Figure 6.16. For the CTT node, the concrete efficiency factors 
at each face are identical to the following: 

𝑚𝑚 = 0.85 − 𝑓𝑓𝑐𝑐′
20 ksi� = 0.85 − 3.6 ksi

20 ksi� = 0.67 > 0.65       ∴ se 𝑚𝑚 = 0.65 

Note that the nodal strength check at back faces is not necessary since an adequate 
development length that satisfies the anchorage requirement is provided in this 
example. 
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Figure 6.15 Resolving the strut forces (left) and details of 3D nodal geometry and applied 

forces (right) at Node C 

  
Figure 6.16 Determination of the confinement modification factor, m, for bottom nodes 

(Nodes C through F) 

𝑚𝑚 = �
𝐴𝐴2
𝐴𝐴1

 = �5.50 × 5.50
3.54 × 3.54

= 1.55 ≤ 2       ∴ se 𝑚𝑚 = 1.55 
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 NODAL STRENGTH AT BEARING FACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 1165.0 kip 
Concrete efficiency factor: 𝑚𝑚 = 0.65  
Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 

=  3.63 ksi 
Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 

= (0.7)(3.63 ksi)(1809.6 in.2 ) 
= 4598.8 kip > 657.3 kip     𝐎𝐎𝐎𝐎 

 NODAL STRENGTH AT STRUT-TO-NODE INTERFACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑆𝑆𝑆𝑆𝑆𝑆 = 1756.1 kip 

Concrete efficiency factor: 𝑚𝑚 = 0.65  

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑤𝑤𝑠𝑠 ∙ 𝐿𝐿𝑆𝑆 = (42.5 in. )(32.8 in. ) 
= 1395.7 in.2 

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 
=  3.63 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 
= (0.7)(3.63 ksi)(1395.7 in2) 
= 3546.5 kip > 1172.4 kip     𝐎𝐎𝐎𝐎 
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• Node D (CTT Node) 
Figure 6.17 illustrates the dimensions and applying forces at Node D in three 
dimensions based on the proposed recommendations of this study. The confinement 
modification factor and the concrete efficiency factor of Node D are the same as 
those of Node C (m = 1.55 and 𝑚𝑚 = 0.65). 

 
Figure 6.17 Details of 3D nodal geometry and applied forces at Node D 

 NODAL STRENGTH AT BEARING FACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 520.2 kip 
Concrete efficiency factor: 𝑚𝑚 = 0.65  
Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 

=  3.63 ksi 
Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 

= (0.7)(3.63 ksi)(1809.6 in.2 ) 
= 4598.8 kip > 520.2 kip     𝐎𝐎𝐎𝐎 
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 NODAL STRENGTH AT STRUT-TO-NODE INTERFACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑆𝑆𝑆𝑆𝑆𝑆 = 1756.1 kip 

Concrete efficiency factor: 𝑚𝑚 = 0.65  

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑤𝑤𝑠𝑠 ∙ 𝐿𝐿𝑆𝑆 = (42.5 in. )(31.0 in. ) 
= 1317.1 in.2 

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 
=  3.63 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 
= (0.7)(3.63 ksi)(1544.9 in2) 
= 3346.8 kip > 1022.2 kip     𝐎𝐎𝐎𝐎 

• Node E (CTT Node) 
Figure 6.18 illustrates the dimensions and applying forces at Node E in three 
dimensions based on the proposed recommendations of this study. The confinement 
modification factor and the concrete efficiency factor of Node E are the same as 
those of Node C (m = 1.55 and 𝑚𝑚 = 0.65). Two diagonal struts (𝐹𝐹𝐴𝐴𝐴𝐴 and 𝐹𝐹𝐴𝐴𝐴𝐴) are 
resolved into one diagonal strut as summarized in the following table. 

 Strut 
Force component*, kip Strut Force, kip 

(�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) 𝑥𝑥 𝑦𝑦 𝑧𝑧 

Diagonal 
struts 

𝐹𝐹𝐴𝐴𝐴𝐴 304.4 -253.5 170.6 431.3 

𝐹𝐹𝐴𝐴𝐴𝐴 116.3 -200.8 0.0 232.0 

Resolved 
Strut 𝐹𝐹𝑐𝑐,𝐴𝐴 420.7 -454.2 170.6 642.2 

Strut Angle (atan(𝑧𝑧/�𝑥𝑥2 + 𝑦𝑦2)), DEG 15.4 
*The sign of a number is based on the coordinate specified in Figure 6.8 
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Figure 6.18 Resolving the forces (left) and details of 3D nodal geometry and applied 

forces (right) at Node E 

 

 NODAL STRENGTH AT BEARING FACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 170.7 kip 
Concrete efficiency factor: 𝑚𝑚 = 0.65  
Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 

=  3.63 ksi 
Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 

= (0.7)(3.63 ksi)(1809.6 in.2 ) 
= 4598.8 kip > 170.7 kip     𝐎𝐎𝐎𝐎 

 NODAL STRENGTH AT STRUT-TO-NODE INTERFACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑆𝑆𝑆𝑆𝑆𝑆 = 642.2 kip 

Concrete efficiency factor: 𝑚𝑚 = 0.65  

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑤𝑤𝑠𝑠 ∙ 𝐿𝐿𝑆𝑆 = (42.5 in. )(21.7 in. ) 
= 924.6 in.2 

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 
=  3.63 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 
= (0.7)(3.63 ksi)(924.6 in2) 
= 2349.4 kip > 642.2 kip     𝐎𝐎𝐎𝐎 
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• Node F (CTT Node) 
Figure 6.19 illustrates the dimensions and applying forces at Node F in three 
dimensions based on the proposed recommendations of this study. The confinement 
modification factor and the concrete efficiency factor of Node F are the same as 
those of Node C (m = 1.55 and 𝑚𝑚 = 0.65). Two diagonal struts (𝐹𝐹𝐹𝐹𝐴𝐴 and 𝐹𝐹𝐹𝐹𝐴𝐴) are 
resolved into one diagonal strut as summarized in the following table. 

 Strut 
Force component*, kip Strut Force, kip 

(�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) 𝑥𝑥 𝑦𝑦 𝑧𝑧 

Diagonal 
struts 

𝐹𝐹𝐹𝐹𝐴𝐴 549.2 340.9 307.8 716.0 

𝐹𝐹𝐹𝐹𝐴𝐴 38.4 113.4 0.0 119.6 

Resolved 
Strut 𝐹𝐹𝑐𝑐,𝐹𝐹 587.6 454.2 307.8 803.9 

Strut Angle (atan(𝑧𝑧/�𝑥𝑥2 + 𝑦𝑦2)), DEG 22.5 
*The sign of a number is based on the coordinate specified in Figure 6.8 

 

 
Figure 6.19 Resolving the forces (left) and details of 3D nodal geometry and applied 

forces (right) at Node F 
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 NODAL STRENGTH AT BEARING FACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 307.8 kip 
Concrete efficiency factor: 𝑚𝑚 = 0.65  
Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 

=  3.63 ksi 
Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 

= (0.7)(3.63 ksi)(1809.6 in.2 ) 
= 4598.8 kip > 307.8 kip     𝐎𝐎𝐎𝐎 

 

 NODAL STRENGTH AT STRUT-TO-NODE INTERFACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑆𝑆𝑆𝑆𝑆𝑆 = 803.9 kip 

Concrete efficiency factor: 𝑚𝑚 = 0.65  

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑤𝑤𝑠𝑠 ∙ 𝐿𝐿𝑆𝑆 = (42.5 in. )(26.3 in. ) 
= 1118.1 in.2 

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 
=  3.63 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 
= (0.7)(3.63 ksi)(1118.1 in2) 
= 2841.1 kip > 803.9 kip     𝐎𝐎𝐎𝐎 

Therefore, the nodal capacities of the CCC nodes and CTT nodes with defined 
nodal geometry are greater than factored loads. 

6.2.1.6. Step 6: Proportion Shrinkage and Temperature 
Reinforcement 
The widths of the footing in both directions are 192 in. and the thickness is 60 in. 
For this footing, 0.50 in.2/ft.  for side faces is required for shrinkage and 
temperature reinforcement, as the following calculation indicates. 

 

𝐴𝐴𝑠𝑠 ≥
1.30𝑏𝑏ℎ

2(𝑏𝑏 + ℎ)𝑓𝑓𝑦𝑦
=

1.30(192 in. )(60 in. )
2(192 in. +60 in. )(60 ksi)

= 0.50 in.2 ft.⁄   

 
To determine the spacing of side face reinforcement, the spacing of bottom mat 
reinforcement (5 in.) is doubled, for practical purposes. This spacing (10 in.) is 
under the maximum of 12 in. for components thicker than 36.0 in. On the side faces, 
No. 6 bars with 10 in. spacing (𝐴𝐴𝑠𝑠 = 0.53 in.2 ft.⁄ ) are provided in both horizontal 
and vertical directions. On the top face, No. 6 bars with 10 in. spacing in orthogonal 
directions are provided. The shrinkage and temperature reinforcement is not 
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necessary on the bottom face because uniformly distributed bottom mat 
reinforcement exists over the entire bottom face. The reinforcing details are 
provided in Section 6.2.3. 

6.2.1.7. Step 7: Provide Necessary Anchorage for Ties  

• Bottom Ties 
As described in Section 4.4, all ties have to be completely developed at the section 
where the tie centroid intersects with the extended nodal zone. It is necessary to 
check whether the available development length for bottom mat reinforcement is 
greater than the minimum requirement. Figure 6.20 depicts the available length of 
Tie CD at both ends. Resolved struts were used to define the extended nodal zone, 
and the projected angles on XZ- and YZ-plane as summarized the following table. 

 

Resolved 
Strut 

Force component*, kip Strut Force, kip 
�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 

Projected Angle, DEG 
XZ-Plane YZ-Plane 

𝑥𝑥 𝑦𝑦 𝑧𝑧 atan(𝑧𝑧/𝑥𝑥) atan(𝑧𝑧/𝑦𝑦) 

CA -587.6 772.8 657.3 1172.4 48.2 40.4 

DA -420.7 -772.8 520.2 -1022.2 51.0 33.9 

EA 420.7 -454.2 170.6 642.2 22.1 20.6 

FA 587.6 454.2 307.8 803.9 27.6 34.1 

*The sign of a number is based on the coordinate specified in Figure 6.8 
 

 
Figure 6.20 Critical sections for the development of Tie CD 



57 

The available development lengths for the bottom ties are indicated by the 
following calculation:  

 Tie CD 

𝑙𝑙𝑏𝑏𝐴𝐴,𝐴𝐴𝐷𝐷,𝐴𝐴 =
𝑐𝑐𝑏𝑏

tan 𝜃𝜃𝐴𝐴𝐴𝐴,𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝−YZ
+ 𝐷𝐷𝐷𝐷𝑆𝑆′ 2⁄ + 𝐷𝐷𝐷𝐷𝑆𝑆 2⁄ + 𝑂𝑂𝐻𝐻 − 𝑐𝑐 

=
(5.41 in. )
tan 40.4°

+ (42.5 in. ) 2⁄ + (48.0 in. ) 2⁄ + 9 in.−3 in. = 57.6 in. 

𝑙𝑙𝑏𝑏𝐴𝐴,𝐴𝐴𝐷𝐷,𝐷𝐷 =
𝑐𝑐𝑏𝑏

tan 𝜃𝜃𝐷𝐷𝐴𝐴,𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝−𝑌𝑌𝑌𝑌
+ 𝐷𝐷𝐷𝐷𝑆𝑆′ 2⁄ + 𝐷𝐷𝐷𝐷𝑆𝑆 2⁄ + 𝑂𝑂𝐻𝐻 − 𝑐𝑐 

=
(5.41 in. )
tan 33.9°

+ (42.5 in. ) 2⁄ + (48.0 in. ) 2⁄ + 9 in.−3 in. = 59.3 in. 

 Tie DE 

𝑙𝑙𝑏𝑏𝐴𝐴,𝐷𝐷𝐴𝐴,𝐷𝐷 =
𝑐𝑐𝑏𝑏

tan 𝜃𝜃𝐷𝐷𝐴𝐴,𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝−𝑋𝑋𝑌𝑌
+ 𝐷𝐷𝐷𝐷𝑆𝑆′ 2⁄ + 𝐷𝐷𝐷𝐷𝑆𝑆 2⁄ + 𝑂𝑂𝐻𝐻 − 𝑐𝑐 

=
(5.41 in. )
tan 51.0°

+ (42.5 in. ) 2⁄ + (48.0 in. ) 2⁄ + 9 in.−3 in. = 55.6 in. 

𝑙𝑙𝑏𝑏𝐴𝐴,𝐷𝐷𝐴𝐴,𝐴𝐴 =
𝑐𝑐𝑏𝑏

tan 𝜃𝜃𝐴𝐴𝐴𝐴,𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝−𝑋𝑋𝑌𝑌
+ 𝐷𝐷𝐷𝐷𝑆𝑆′ 2⁄ + 𝐷𝐷𝐷𝐷𝑆𝑆 2⁄ + 𝑂𝑂𝐻𝐻 − 𝑐𝑐 

=
(5.41 in. )
tan 22.1°

+ (42.5 in. ) 2⁄ + (48.0 in. ) 2⁄ + 9 in.−3 in. = 64.6 in. 

 Tie EF 

𝑙𝑙𝑏𝑏𝐴𝐴,𝐴𝐴𝐹𝐹,𝐴𝐴 =
𝑐𝑐𝑏𝑏

tan 𝜃𝜃𝐴𝐴𝐴𝐴,𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝−𝑌𝑌𝑌𝑌
+ 𝐷𝐷𝐷𝐷𝑆𝑆′ 2⁄ + 𝐷𝐷𝐷𝐷𝑆𝑆 2⁄ + 𝑂𝑂𝐻𝐻 − 𝑐𝑐 

=
(5.41 in. )
tan 20.6°

+ (42.5 in. ) 2⁄ + (48.0 in. ) 2⁄ + 9 in.−3 in. = 65.7 in. 

𝑙𝑙𝑏𝑏𝐴𝐴,𝐴𝐴𝐹𝐹,𝐹𝐹 =
𝑐𝑐𝑏𝑏

tan 𝜃𝜃𝐹𝐹𝐴𝐴,𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝−𝑌𝑌𝑌𝑌
+ 𝐷𝐷𝐷𝐷𝑆𝑆′ 2⁄ + 𝐷𝐷𝐷𝐷𝑆𝑆 2⁄ + 𝑂𝑂𝐻𝐻 − 𝑐𝑐 

=
(5.41 in. )
tan 34.1°

+ (42.5 in. ) 2⁄ + (48.0 in. ) 2⁄ + 9 in.−3 in. = 59.3 in. 
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 Tie CF 

𝑙𝑙𝑏𝑏𝐴𝐴,𝐴𝐴𝐹𝐹,𝐴𝐴 =
𝑐𝑐𝑏𝑏

tan 𝜃𝜃𝐴𝐴𝐴𝐴,𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝−XZ
+ 𝐷𝐷𝐷𝐷𝑆𝑆′ 2⁄ + 𝐷𝐷𝐷𝐷𝑆𝑆 2⁄ + 𝑂𝑂𝐻𝐻 − 𝑐𝑐 

=
(5.41 in. )
tan 51.0°

+ (42.5 in. ) 2⁄ + (48.0 in. ) 2⁄ + 9 in.−3 in. = 55.6 in. 

𝑙𝑙𝑏𝑏𝐴𝐴,𝐴𝐴𝐹𝐹,𝐹𝐹 =
𝑐𝑐𝑏𝑏

tan 𝜃𝜃𝐴𝐴𝐴𝐴,𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝−𝑋𝑋𝑌𝑌
+ 𝐷𝐷𝐷𝐷𝑆𝑆′ 2⁄ + 𝐷𝐷𝐷𝐷𝑆𝑆 2⁄ + 𝑂𝑂𝐻𝐻 − 𝑐𝑐 

=
(5.41 in. )
tan 27.6°

+ (42.5 in. ) 2⁄ + (48.0 in. ) 2⁄ + 9 in.−3 in. = 61.6 in. 

The minimum required development lengths of a straight bar and a 90- or 180-
degree hooked bar are calculated in accordance with Article 5.10.8.2 of AASHTO 
LRFD (2020). Table 6.2 summarizes the calculation of the minimum development 
lengths for each tie and each anchorage type and compares them with the available 
lengths. As a result, both straight and hooked No. 11 bars are adequate for the 
development within proposed available lengths for all ties due to the low 
reinforcement excess factor𝜆𝜆𝑡𝑡𝑏𝑏  (required reinforcement area/provided reinforcement 
area).  Using straight reinforcing bars for the bottom mat, as is the most common 
current practice, is suggested. 
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Table 6.2 Summary of the minimum development lengths  

Tie Anchorage Type 𝜆𝜆𝑏𝑏𝑐𝑐 𝜆𝜆𝑡𝑡𝑏𝑏 𝑙𝑙𝐴𝐴 or 𝑙𝑙𝐴𝐴ℎ 
[in.] 

𝑙𝑙𝑏𝑏𝐴𝐴,𝑚𝑚𝑡𝑡𝑛𝑛 
[in.] Check 

CD Straight 0.56 0.48 29.1 57.6 OK 
Hooked 1.00 0.48 13.6 OK 

DE Straight 0.56 0.26 15.9 55.6 OK 
Hooked 1.00 0.26 7.4 OK 

EF Straight 0.56 0.28 17.1 59.3 OK 
Hooked 1.00 0.28 8.0 OK 

CF Straight 0.56 0.37 22.2 55.6 OK 
Hooked 1.00 0.36 10.4 OK 

Note) 𝑙𝑙𝐴𝐴 = 2.4𝑑𝑑𝑏𝑏
𝑓𝑓𝑢𝑢
�𝑓𝑓′𝑐𝑐

�
𝜆𝜆𝑟𝑟𝑟𝑟𝜆𝜆𝑐𝑐𝑐𝑐𝜆𝜆𝑟𝑟𝑐𝑐𝜆𝜆𝑒𝑒𝑟𝑟

𝜆𝜆
�, 𝑙𝑙𝐴𝐴ℎ = 38𝐴𝐴𝑏𝑏

60
𝑓𝑓𝑢𝑢
�𝑓𝑓′𝑐𝑐

�𝜆𝜆𝑟𝑟𝑐𝑐𝜆𝜆𝑐𝑐𝑐𝑐𝜆𝜆𝑒𝑒𝑟𝑟
𝜆𝜆

� 

𝑙𝑙𝑏𝑏𝐴𝐴,𝑚𝑚𝑡𝑡𝑛𝑛: the minimum of the available development length at both ends of a tie 
𝜆𝜆𝑏𝑏𝑟𝑟: reinforcement location factor (=1.0) 
𝜆𝜆𝑐𝑐𝑓𝑓 or 𝜆𝜆𝑐𝑐𝑐𝑐: coating factor (=1.0) 
𝜆𝜆𝑏𝑏𝑐𝑐: reinforcement confinement factor (no transverse reinforcement assumed for straight 

bars and 1.0 for hooked bars) 
𝜆𝜆𝑡𝑡𝑏𝑏: excess reinforcement factor 
𝜆𝜆: concrete density modification factor (=1.0) 
 

• Vertical Tie 
The anchorage check for the vertical column tie element (Tie BB') also needs to be 
performed. The available length for the column reinforcement is determined by the 
compression field proposed by Yi et al. (2022) (Figure 6.21) and can be computed 
as follow: 

𝑙𝑙𝑏𝑏𝐴𝐴.𝐴𝐴𝐶𝐶𝐶𝐶 = �
𝐿𝐿𝑡𝑡
𝐿𝐿𝑠𝑠
� (0.9𝐻𝐻 − 𝑐𝑐𝑏𝑏) − �𝑑𝑑𝑏𝑏,𝑏𝑏𝑐𝑐� = �

26.9
86.7

� (0.9(60) − 5.41) − (1.41) = 13.7 in. 

 

 
Figure 6.21 Critical section for development of column tie: Load Case VI 
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As designed with Load Case III and VI, 90-degree hooked bars are employed for 
the column reinforcement, and the column reinforcement placed for the major 
moment is recommended to be oriented towards the column. Even though the 
hooked column reinforcement placed with respect to the minor moment axis is 
outer-oriented, the diagonal strut existing in the strut-and-tie model of Load Case 
IV and VII to represent a non-contact lap splice behavior of the column and drilled 
shaft reinforcement can also activate the bearing action of the outer-oriented hook. 
Therefore, the anchorage requirement checks for both inner and outer-oriented 
hooked column reinforcement are performed with the required development length 
of hooked bars in accordance with AASHTO LRFD (2020). The reinforcement 
confinement factor, 𝜆𝜆𝑏𝑏𝑐𝑐 , is 0.8 determined by given details of the column 
reinforcement; the coating factor, 𝜆𝜆𝑐𝑐𝑐𝑐, is 1.0 for uncoated reinforcement; the excess 
reinforcement factor, 𝜆𝜆𝑡𝑡𝑏𝑏 , is 0.048 based on the given and required column 
reinforcement; and the concrete density modification factor, 𝜆𝜆, is 1.0 for normal 
weight concrete. The required development length of a hooked No. 11 bar is 
calculated below: 

𝑙𝑙𝐴𝐴ℎ =
38.0(1.41 in. )

60.0
∙

60 ksi
√3.6 ksi

× �
0.8 ∙ 1.0 ∙ 0.048

1.0
� = 1.1 in. < 𝑙𝑙𝑏𝑏𝐴𝐴,𝐴𝐴𝐶𝐶𝐶𝐶(= 13.6 in. ) 

Therefore, the anchorage details designed for Load Case I through V (Table 6.1) 
can still develop sufficient stress levels to be safe under Load Case VI. 
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6.2.2. Design Calculations: Load Case VII 
Figure 6.22 presents the factored load case where the column is subjected to axial 
compression combined with large biaxial flexure. This loading combination 
induces tension at one corner of the column and one of four drilled shafts. 

 
Figure 6.22 Factored load: Load Case VII 

6.2.2.1. Step 1: Determine the Loads 
A sectional analysis is also conducted for the load combination. Three equilibrium 
equations (∑𝑃𝑃𝑐𝑐 = 0; ∑𝑀𝑀𝑐𝑐𝑢𝑢 = 0; ∑𝑀𝑀𝑐𝑐𝑦𝑦 = 0) can derive three unknowns (neutral 
axis depth (𝑐𝑐); neutral axis inclination (𝜃𝜃); extreme compressive fiber strain (𝜀𝜀𝑐𝑐)) 
required for developing the strain and stress distribution over the column section. 
The calculation procedure is presented in Appendix A. Figure 6.23 illustrates the 
developed strain and stress distribution. The compressive and tensile resultant 
forces comprising the equivalent force system of the 3D strut-and-tie model can be 
determined from the distribution.  
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Figure 6.23 Stress distribution over the column section: Load Case VII 
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6.2.2.2. Step 2: Analyze Structural Component 
The reaction forces in drilled shafts can be derived from the equilibrium conditions 
of the external loading. Figure 6.24 presents the results of the structural analysis. 

𝑅𝑅1 = 𝑃𝑃𝑢𝑢
4

+ 1
2
� 𝑀𝑀𝑢𝑢𝑢𝑢
𝑆𝑆𝐷𝐷𝐷𝐷,𝑢𝑢

� + 1
2
� 𝑀𝑀𝑢𝑢𝑢𝑢

𝑆𝑆𝐷𝐷𝐷𝐷,𝑢𝑢
�  

= 1015 kip
4

+ 1
2
�1144 k−ft
10.50 ft

� + 1
2
�5526 k−ft
10.50 ft

� = 571.4 kip (Compression)  

𝑅𝑅2 = 𝑃𝑃𝑢𝑢
4
− 1

2
� 𝑀𝑀𝑢𝑢𝑢𝑢
𝑆𝑆𝐷𝐷𝐷𝐷,𝑢𝑢

� + 1
2
� 𝑀𝑀𝑢𝑢𝑢𝑢
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�  
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4

− 1
2
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2
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2
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Figure 6.24 Applied loading and reaction forces: Load Case VII 
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6.2.2.3. Step 3: Develop Strut-and-Tie Model 
As described in Section 5.1.2.2, the drilled shaft footing subjected to large biaxial 
flexure is designed using the idealized 3D strut-and-tie model. Figure 6.25 and 
Figure 6.26 present the idealized strut-and-tie model for Load Case VII. The force 
component of Strut BE is not considered in the design example due to the error 
resulting from integrating the force transfer plane offset for the column and drilled 
shaft ties in the idealized model. Similarly, the nodal position of Node G is 
determined to satisfy the equilibrium condition at Node A, as shown in Figure 6.25. 
The calculation procedure to derive the elemental forces is provided in Appendix 
B. 

 
Figure 6.25 3D strut-and-tie model (plan view – top tie ring): Load Case VII 

 
Figure 6.26 3D strut-and-tie model (axonometric view): Load Case VII 
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The error in the idealized model is estimated by shifting Node E on the x-axis to 
satisfy the equilibrium condition, as illustrated in Figure 6.27. Based on the shifted 
nodal position, the moment to the y-axis is computed from the reaction forces 
(𝑀𝑀𝑐𝑐𝑦𝑦,𝑐𝑐𝑝𝑝𝑚𝑚𝑝𝑝𝑐𝑐𝑡𝑡𝑡𝑡𝐴𝐴 = 5494  k-ft) and compared with the factored moment (𝑀𝑀𝑐𝑐𝑦𝑦 =
5526 k-ft). The error is estimated as 0.58%, which is an insignificant error. Based 
on the estimated error, the idealized model can be applied to the footing geometry 
and load case of the design example. 

 
Figure 6.27 Modified strut-and-tie model configuration to estimate error in idealized model  

6.2.2.4. Step 4: Proportion Ties 
The reinforcement amounts of the drilled shaft, bottom mat, and top mat 
reinforcement are estimated from the tie forces. Even though Node G deviates from 
the center axis of the drilled shaft, the inclined top ties connected to the node are 
also considered to be carried by the top mat reinforcement placed within the half 
span of the footing. Similar to Load Case VI, the derived column tie force can verify 
the safety of the given column reinforcement design. 

 Tie EI (Drilled Shaft Reinforcement) 

Factored tie force: 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 = 63.9 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑡𝑡 = 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑡𝑡 = 63.9 kip 
𝐴𝐴𝑠𝑠𝑡𝑡 = 1.18 in.2 

Number of No. 9 bars required: 1.18 in.2
1.00 in.2� = 2 bars 
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 Tie CD (Bottom Mat Reinforcement) 

Factored tie force: 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 = 650.8 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑡𝑡 = 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑡𝑡 = 650.8 kip 
𝐴𝐴𝑠𝑠𝑡𝑡 = 12.05 in.2 

Number of No. 11 bars required: 12.05 in.2
1.56 in.2� = 8 bars 

 Tie DE (Bottom Mat Reinforcement) 

Factored tie force: 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 = 283.9 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑡𝑡 = 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑡𝑡 = 283.9 kip 
𝐴𝐴𝑠𝑠𝑡𝑡 = 5.26 in.2 

Number of No. 11 bars required: 5.26 in.2
1.56 in.2� = 4 bars 

 Tie EF (Bottom Mat Reinforcement) 

Factored tie force: 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 = 696.2 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑡𝑡 = 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑡𝑡 = 696.2 kip 
𝐴𝐴𝑠𝑠𝑡𝑡 = 12.89 in.2 

Number of No. 11 bars required: 12.89 in.2
1.56 in.2� = 9 bars 

 Tie CF (Bottom Mat Reinforcement) 

Factored tie force: 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 = 331.5 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑡𝑡 = 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑡𝑡 = 331.5 kip 
𝐴𝐴𝑠𝑠𝑡𝑡 = 6.14 in.2 

Number of No. 11 bars required: 6.14 in.2
1.56 in.2� = 4 bars 

 Ties G1J (x-directional Top Mat Reinforcement) 

Factored tie force: 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 = 126.1 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑡𝑡 = 𝐹𝐹𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑡𝑡 = 126.1 kip 
𝐴𝐴𝑠𝑠𝑡𝑡 = 2.33 in.2 

Number of No. 6 bars required: 2.33 in.2
0.44 in.2� = 6 bars 
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 Ties GnH (y-directional Top Mat Reinforcement) 

Factored tie force: 𝐹𝐹𝑢𝑢,𝑡𝑡𝑡𝑡𝑡𝑡 = 107.7 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑠𝑠 = 𝐹𝐹𝑢𝑢,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑠𝑠 = 107.7 kip 
𝐴𝐴𝑠𝑠𝑠𝑠 = 1.99 in.2 

Number of No. 6 bars required: 1.99 in.2
0.44 in.2� = 5 bars 

 Tie HI (Top Mat Reinforcement) 

Factored tie force: 𝐹𝐹𝑢𝑢,𝑡𝑡𝑡𝑡𝑡𝑡 = 67.9 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑠𝑠 = 𝐹𝐹𝑢𝑢,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑠𝑠 = 67.9 kip 
𝐴𝐴𝑠𝑠𝑠𝑠 = 1.26 in.2 

Number of No. 6 bars required: 1.26 in.2
0.44 in.2� = 3 bars 

 Tie IJ (Top Mat Reinforcement) 

Factored tie force: 𝐹𝐹𝑢𝑢,𝑡𝑡𝑡𝑡𝑡𝑡 = 35.3 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑠𝑠 = 𝐹𝐹𝑢𝑢,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑠𝑠 = 35.3 kip 
𝐴𝐴𝑠𝑠𝑠𝑠 = 0.65 in.2 

Number of No. 6 bars required: 0.65 in.2
0.44 in.2� = 2 bars 

 Tie BB' (Column Reinforcement) 

Factored tie force: 𝐹𝐹𝑢𝑢,𝑡𝑡𝑡𝑡𝑡𝑡 = 456.3 kip 

Tie capacity: 𝜙𝜙 ∙ 𝑓𝑓𝑦𝑦 ∙ 𝐴𝐴𝑠𝑠𝑠𝑠 = 𝐹𝐹𝑢𝑢,𝑡𝑡𝑡𝑡𝑡𝑡 
(0.9)(60 ksi)𝐴𝐴𝑠𝑠𝑠𝑠 = 456.3 kip 
𝐴𝐴𝑠𝑠𝑠𝑠 = 8.45 in.2 

Number of No. 11 bars required: 8.45 in.2
1.56 in.2� = 6 bars  

(20 bars are under tension) 

The bottom mat reinforcement amount determined from Load Case I (38-#11) is 
still safe for Load Case VII. Similarly, the drilled shaft design of Load Case IV (4-
#9 per each drilled shaft) governs the design. Furthermore, the top mat 
reinforcement amount determined from the shrinkage and temperature 
reinforcement (20-#6) requirement also governs the top mat reinforcement design 
of Load Case VII. The column reinforcement design is also safe to carry the column 
tie force resulting from Load Case VII. 
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6.2.2.5. Step 5: Perform Strength Checks 

• Node A (CCC node) 

The area (𝐴𝐴𝑚𝑚𝑐𝑐) and width (𝑊𝑊𝑡𝑡𝑒𝑒) of the modified equivalent square bearing face of 
the CCC node can be derived from the extreme compressive fiber stress and 
resultant compressive force as shown below: 

𝐴𝐴𝑚𝑚𝑐𝑐 =
𝐹𝐹𝐴𝐴
𝑓𝑓𝑐𝑐

=
1471.3 kip

1.53 ksi
= 959 in.2 

𝑊𝑊𝑡𝑡𝑒𝑒 = �𝐴𝐴𝑚𝑚𝑐𝑐 = 31.0 in. 

 
Figure 6.28 Derivation of modified equivalent square bearing face of CCC node (Node A): 

Load Case VII 

The diagonal struts acting at Node A are subdivided into two groups depending on 
the reaction forces at Node D and F, as described in Section 5.2.2. The resolved 
strut force (Strut AG) of the widespread diagonal struts (Struts AG1, …, AGn) is 
estimated as 143.7 kip (x-force component: 116.2 kip; y-force component: 84.6 kip) 
based on the equilibrium condition at Node A.  

 Node D-side 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 = 𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑅𝑅𝐷𝐷

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (927.3) �

462.4
462.4 + 45.1�

= 844.9 kip 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 = 𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑅𝑅𝐷𝐷

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (143.7) �

462.4
462.4 + 45.1�

= 131.0 kip 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 = 𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑅𝑅𝐷𝐷

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (685.5) �

462.4
462.4 + 45.1�

= 624.6 kip 
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 Node F-side 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹 = 𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑅𝑅𝐹𝐹

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (927.3) �

45.1
462.4 + 45.1�

= 414.7 kip 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹 = 𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑅𝑅𝐹𝐹

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (143.7) �

45.1
462.4 + 45.1�

= 12.8 kip 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹 = 𝐹𝐹𝐴𝐴𝐴𝐴 �
𝑅𝑅𝐹𝐹

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (685.5) �

45.1
462.4 + 45.1�

= 60.9 kip 

The resultant compressive force and the modified bearing face are also subdivided 
into two parts, and two subdivided nodes of the CCC node (Nodes 𝐴𝐴𝐷𝐷 and 𝐴𝐴𝐹𝐹) are 
assigned to the centroid of each subdivided bearing face (Figure 6.29). 

 
Figure 6.29 Subdivided bearing face of CCC node (Node A): Load Case VII 

 

𝐹𝐹𝐴𝐴,𝐷𝐷 = 𝐹𝐹𝐴𝐴 �
𝑅𝑅𝐷𝐷

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (1471.3) �

462.4
462.4 + 45.1�

= 1340.6 kip 

𝐹𝐹𝐴𝐴,𝐹𝐹 = 𝐹𝐹𝐴𝐴 �
𝑅𝑅𝐹𝐹

𝑅𝑅𝐷𝐷 + 𝑅𝑅𝐹𝐹
� = (1471.3) �

45.1
462.4 + 45.1�

= 130.7 kip 

𝑊𝑊𝑡𝑡𝑒𝑒,𝐷𝐷 = 𝑊𝑊𝑡𝑡𝑒𝑒
𝐹𝐹𝐴𝐴,𝐷𝐷

𝐹𝐹𝐴𝐴
= (31.0) �

1340.6
1471.3�

= 28.2 in. 

𝑊𝑊𝑡𝑡𝑒𝑒,𝐹𝐹 = 𝑊𝑊𝑡𝑡𝑒𝑒
𝐹𝐹𝐴𝐴,𝐹𝐹

𝐹𝐹𝐴𝐴
= (31.0) �

130.7
1471.3�

= 2.8 in. 

The two subdivided groups of internal forces are resolved into two diagonal struts 
(𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 and 𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹). 

 



70 

 

 Strut 
Force component*, kip Strut Force, kip 

(�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) 𝑥𝑥 𝑦𝑦 𝑧𝑧 

Node D-side 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 -302.0 592.9 520.6 844.9 
𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 -105.9 77.1 0.0 131.0 
𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 498.7 -116.4 357.6 624.6 
𝐹𝐹𝐴𝐴𝐷𝐷 -258.3 -642.4 462.4 835.7 
𝐹𝐹𝐴𝐴𝐴𝐴 -35.3 -84.6 0.0 91.7 

Resolved 
Strut 𝐹𝐹𝐴𝐴𝐴𝐴,𝐷𝐷 -212.9 -173.3 1340.6 1368.4 

Strut Angle (atan(𝑧𝑧/�𝑥𝑥2 + 𝑦𝑦2)), DEG 78.4 
*The sign of a number is based on the coordinate specified in Figure 6.8 

 

 Strut 
Force component*, kip Strut Force, kip 

(�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) 𝑥𝑥 𝑦𝑦 𝑧𝑧 

Node F-side 

𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹 -29.4 57.8 50.8 82.4 
𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹 -10.3 7.5 0.0 12.8 
𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹 48.6 -11.3 34.9 60.9 
𝐹𝐹𝐴𝐴𝐹𝐹 87.8 51.3 45.1 111.3 
𝐹𝐹𝐴𝐴𝐴𝐴 116.2 67.9 0.0 134.6 

Resolved 
Strut 𝐹𝐹𝐴𝐴𝐴𝐴,𝐹𝐹 212.9 173.3 130.7 304.0 

Strut Angle (atan(𝑧𝑧/�𝑥𝑥2 + 𝑦𝑦2)), DEG 25.5 
*The sign of a number is based on the coordinate specified in Figure 6.8 

 

Each subdivided node is subjected to three force components (subdivided resultant 
compressive force, resolved diagonal strut, and horizontal force component of the 
resolved diagonal strut). Therefore, the 3D nodal geometry of the subdivided nodes 
can be developed based on the design recommendations of Yi et al. (2022), as 
illustrated in Figure 6.30, Figure 6.32, and Figure 6.33. 
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Figure 6.30 Subdivided and resolved internal forces to develop 3D nodal geometry of 

CCC node: Load Case VII 

The triaxial confinement factor, m, can be computed from the equivalent square 
bearing face, which has the same area as the actual compressive region of the 
column section. The center of the assumed bearing area coincides with the resultant 
compressive force position derived from the sectional analysis described in Section 
6.2.2.1. 

 
Figure 6.31 Determination of confinement modification factor, m, for Node A: Load Case VII 

 

𝑚𝑚 = �
𝐴𝐴2
𝐴𝐴1

 = �10.32 × 10.32
4.05 × 4.05

= 2.55 ≤ 3       ∴ se 𝑚𝑚 = 2.55 
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Concrete efficiency factor, 𝑚𝑚, is determined in accordance with Table 5.8.2.5.3a-1 
of AASHTO LRFD (2020) and must satisfy the minimum side face reinforcement 
requirement (>0.18%).  

 
Figure 6.32 Details of 3D nodal geometry at Node AD: Load Case VII 

 NODAL STRENGTH AT BEARING FACE (Node AD) 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 1340.6 kip 

Concrete efficiency factor: 𝑚𝑚 = 0.85  

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (2.55)(0.85)(3.6 ksi) 
=  7.80 ksi 

Nodal capacity:  𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝑊𝑊𝑡𝑡𝑒𝑒𝑊𝑊𝑡𝑡𝑒𝑒,𝐷𝐷 
= (0.7)(7.80 ksi)(874 in.2 ) 
= 4770.4 kip > 1340.6 kip     𝐎𝐎𝐎𝐎 

 NODAL STRENGTH AT BACK FACE (Node AD) 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 = 274.5 kip 

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 = 𝑊𝑊𝑡𝑡𝑒𝑒 ∙ 0.2𝐻𝐻 = (31.0 in. )(12.0 in. )  
= 294 in2  

Concrete efficiency factor: 𝑚𝑚 = 0.85  

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (2.55)(0.85)(3.6 ksi) 
=  7.80 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏  
= (0.7)(7.80 ksi)(294 in.2 ) 
= 1605.9 kip > 274.5 kip     𝐎𝐎𝐎𝐎 
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 NODAL STRENGTH AT STRUT-TO-NODE INTERFACE (Node AD) 

Factored load: 𝐹𝐹𝑐𝑐,𝑆𝑆𝑆𝑆𝑆𝑆 = 1368.4 kip 

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑊𝑊𝑡𝑡𝑒𝑒 ∙ 𝐿𝐿𝑆𝑆 = (31.0 in. )(29.6 in. ) 
= 915 in.2 

Concrete efficiency factor: 𝑚𝑚 = 0.85 − 𝑓𝑓𝑐𝑐′
20 ksi� = 0.85 − 3.6 ksi

20 ksi�  
   = 0.67 > 0.65          ∴ se 𝑚𝑚 = 0.65  

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (2.55)(0.65)(3.6 ksi) 
=  5.96 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 
= (0.7)(5.96 ksi)(915 in2) 

         = 3820.1 kip > 1368.4 kip     𝐎𝐎𝐎𝐎 

 
Figure 6.33 Details of 3D nodal geometry at Node AF: Load Case VII 

 

 NODAL STRENGTH AT BEARING FACE (Node AF) 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 130.7 kip 

Concrete efficiency factor: 𝑚𝑚 = 0.85  

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (2.55)(0.85)(3.6 ksi) 
=  7.80 ksi 

Nodal capacity:  𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝑊𝑊𝑡𝑡𝑒𝑒𝑊𝑊𝑡𝑡𝑒𝑒,𝐹𝐹  
= (0.7)(7.80 ksi)(85 in.2 ) 
= 465.1 kip > 130.7 kip     𝐎𝐎𝐎𝐎 
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 NODAL STRENGTH AT BACK FACE (Node AF) 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 = 274.5 kip 

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 = 𝑊𝑊𝑡𝑡𝑒𝑒 ∙ 0.2𝐻𝐻 = (31.0 in. )(12.0 in. )  
= 294 in2  

Concrete efficiency factor: 𝑚𝑚 = 0.85  

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (2.55)(0.85)(3.6 ksi) 
=  7.80 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏  
  = (0.7)(7.80 ksi)(294 in.2 ) 

= 1605.9 kip > 274.5 kip     𝐎𝐎𝐎𝐎 

 NODAL STRENGTH AT STRUT-TO-NODE INTERFACE (Node AF) 

Factored load: 𝐹𝐹𝑐𝑐,𝑆𝑆𝑆𝑆𝑆𝑆 = 304.0 kip 

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑊𝑊𝑡𝑡𝑒𝑒 ∙ 𝐿𝐿𝑆𝑆 = (31.0 in. )(9.8 in. ) 
= 302 in.2 

Concrete efficiency factor: 𝑚𝑚 = 0.85 − 𝑓𝑓𝑐𝑐′
20 ksi� = 0.85 − 3.6 ksi

20 ksi�  
   = 0.67 > 0.65          ∴ se 𝑚𝑚 = 0.65  

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (2.55)(0.65)(3.6 ksi) 
=  5.96 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 
= (0.7)(5.96 ksi)(302 in2) 
= 1261.7 kip > 304.0 kip     𝐎𝐎𝐎𝐎 
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• Node C (CTT Node) 
Figure 6.34 illustrates the dimension and applying forces after resolving struts AC 
and BC at Node C in three dimensions based on the proposed recommendations of 
this study. The confinement modification factor and the concrete efficiency factor 
of Node C are the same as those in Load Case VI (m = 1.55 and 𝑚𝑚 = 0.65). Note 
that the nodal strength check at back faces is not necessary since an adequate 
development length that satisfies the anchorage requirement is provided in this 
example. 

 

 
Figure 6.34 Details of 3D nodal geometry and applied forces at Node C 

 NODAL STRENGTH AT BEARING FACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 571.4 kip 
Concrete efficiency factor: 𝑚𝑚 = 0.65  
Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 

=  3.63 ksi 
Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 

= (0.7)(3.63 ksi)(1809.6 in.2 ) 
= 4598.8 kip > 571.4 kip     𝐎𝐎𝐎𝐎 
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NODAL STRENGTH AT STRUT-TO-NODE INTERFACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑆𝑆𝑆𝑆𝑆𝑆 = 927.3 kip 

Concrete efficiency factor: 𝑚𝑚 = 0.65  

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑤𝑤𝑠𝑠 ∙ 𝐿𝐿𝑆𝑆 = (42.5 in. )(34.7 in. ) 
= 1477.5 in.2 

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 
=  3.63 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 
= (0.7)(3.63 ksi)(1477.5 in2) 
= 3755.0 kip > 927.3 kip     𝐎𝐎𝐎𝐎 

• Node D (CTT Node) 
Figure 6.35 illustrates the dimension and applying forces at Node D in three 
dimensions based on the proposed recommendations of this study. The confinement 
modification factor and the concrete efficiency factor of Node D are the same as 
those of Node C (m = 1.55 and 𝑚𝑚 = 0.65). Two diagonal struts (𝐹𝐹𝐷𝐷𝐴𝐴 and 𝐹𝐹𝐷𝐷𝐴𝐴) are 
resolved into one diagonal strut as summarized in the following table. 

 Strut 
Force component*, kip Strut Force, kip 

(�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) 𝑥𝑥 𝑦𝑦 𝑧𝑧 

Diagonal 
struts 

𝐹𝐹𝐷𝐷𝐴𝐴 268.3 642.4 462.4 835.7 

𝐹𝐹𝐷𝐷𝐴𝐴 15.4 8.3 0.0 17.7 

Resolved 
Strut 𝐹𝐹𝑐𝑐,𝐷𝐷 283.7 650.7 462.4 847.3 

Strut Angle (atan(𝑧𝑧/�𝑥𝑥2 + 𝑦𝑦2)), DEG 33.1 
*The sign of a number is based on the coordinate specified in Figure 6.8 

 



77 

 
Figure 6.35 Resolving the forces (left) and details of 3D nodal geometry and applied 

forces (right) at Node D 

 

 NODAL STRENGTH AT BEARING FACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 462.4 kip 
Concrete efficiency factor: 𝑚𝑚 = 0.65  
Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 

=  3.63 ksi 
Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 

= (0.7)(3.63 ksi)(1809.6 in.2 ) 
= 4598.8 kip > 462.4 kip     𝐎𝐎𝐎𝐎 

 NODAL STRENGTH AT STRUT-TO-NODE INTERFACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑆𝑆𝑆𝑆𝑆𝑆 = 824.4 kip 

Concrete efficiency factor: 𝑚𝑚 = 0.65  

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑤𝑤𝑠𝑠 ∙ 𝐿𝐿𝑆𝑆 = (42.5 in. )(32.3 in. ) 
= 1373.4 in.2 

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 
=  3.63 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 
= (0.7)(3.63 ksi)(1373.4 in2) 
= 3490.2 kip > 824.4 kip     𝐎𝐎𝐎𝐎 
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• Node F (CTT Node) 
Figure 6.36 illustrates the dimension and applying forces at Node F in three 
dimensions based on the proposed recommendations of this study. The confinement 
modification factor and the concrete efficiency factor of Node F are the same as 
those of Node C (m = 1.55 and 𝑚𝑚 = 0.65). Two diagonal struts (𝐹𝐹𝐹𝐹𝐴𝐴 and 𝐹𝐹𝐹𝐹𝐴𝐴) are 
resolved into one diagonal strut as summarized in the following table. 

 Strut 
Force component*, kip Strut Force, kip 

(�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) 𝑥𝑥 𝑦𝑦 𝑧𝑧 

Diagonal 
struts 

𝐹𝐹𝐹𝐹𝐴𝐴 -87.8 -51.3 -45.1 111.3 

𝐹𝐹𝐹𝐹𝐴𝐴 -243.7 -644.9 0.0 689.5 

Resolved 
Strut 𝐹𝐹𝑐𝑐,𝐹𝐹 -331.5 -696.3 -45.1 772.5 

Strut Angle (atan(𝑧𝑧/�𝑥𝑥2 + 𝑦𝑦2)), DEG 3.3 
*The sign of a number is based on the coordinate specified in Figure 6.8 

 

 
Figure 6.36 Resolving the forces (left) and details of 3D nodal geometry and applied 

forces (right) at Node F 
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 NODAL STRENGTH AT BEARING FACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 45.1 kip 
Concrete efficiency factor: 𝑚𝑚 = 0.65  
Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 

=  3.63 ksi 
Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 

= (0.7)(3.63 ksi)(1809.6 in.2 ) 
= 4598.8 kip > 45.1 kip     𝐎𝐎𝐎𝐎 

 NODAL STRENGTH AT STRUT-TO-NODE INTERFACE 

Factored load: 𝐹𝐹𝑐𝑐,𝑆𝑆𝑆𝑆𝑆𝑆 = 772.5 kip 

Concrete efficiency factor: 𝑚𝑚 = 0.65  

Effective area: 𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑤𝑤𝑠𝑠 ∙ 𝐿𝐿𝑆𝑆 = (42.5 in. )(13.3 in. ) 
= 565.1 in.2 

Concrete capacity: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑚𝑚 ∙ 𝑚𝑚 ∙ 𝑓𝑓𝑐𝑐′ = (1.55)(0.65)(3.6 ksi) 
=  3.63 ksi 

Nodal capacity: 𝜙𝜙𝐹𝐹𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜙𝜙𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑛𝑛,𝑆𝑆𝑆𝑆𝑆𝑆 
= (0.7)(3.63 ksi)(565.1 in2) 
= 1436.1 kip > 772.5 kip     𝐎𝐎𝐎𝐎 

Therefore, the nodal capacities of the CCC nodes and CTT nodes with defined 
nodal geometry are greater than factored loads. 

6.2.2.6. Step 6: Proportion Shrinkage and Temperature 
Reinforcement 
The necessary shrinkage and temperature reinforcement for the footing was 
specified in Section 6.2.1.6  On the side faces, No. 6 bars with 10 in. spacing (𝐴𝐴𝑠𝑠 =
0.53 in.2 ft.⁄ ) are required in both horizontal and vertical directions. On the top 
face, No. 6 bars with 10 in. spacing 𝐴𝐴𝑠𝑠 (0.53 in.2 ft.⁄ ) are provided. No. 6 bars with 
10 in. spacing as the top mat reinforcement are sufficient for the required strength 
as calculated in Section 6.2.1.6. Therefore, the original reinforcement plan (No. 6 
bars with 10 in. spacing) will be used. 
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6.2.2.7. Step 7: Provide Necessary Anchorage for Ties  

• Bottom Ties 
Proper anchorage of the bottom mat reinforcement (Ties CD, DE, EF, and FC) was 
discussed in Section 6.2.1.7. These ties are properly anchored with the use of 
straight bars. Bottom ties connected with Node E need to be checked in the 
anchorage because Node E is a smeared node where the boundary of a node is not 
determined by the bearing plate. Figure 6.37 illustrates the available length at Node 
E, confirming that straight bars are anchored properly there. 

 
Figure 6.37 Critical sections for the development of ties at Node E 

• Top Ties 
Each top tie (Ties GH, HI, IJ, and JG) is connected with smeared nodes (Nodes G 
through J) at both ends. The available development length is the same as that at 
Node E, as shown in Figure 6.37. The minimum development length of a No.6 
straight bar is 22.8 in. even if 𝜆𝜆𝑡𝑡𝑏𝑏, excess reinforcement factor, is not considered 
(𝜆𝜆𝑡𝑡𝑏𝑏 = 1.0 ) in accordance with AASHTO LRFD (2020). Therefore, top mat 
reinforcement can be sufficiently developed in the given load case. 

• Vertical Ties 
The 3D strut-and-tie model for Load Case VII contains vertical ties for the column 
(Tie BB') and drilled shaft reinforcement (Tie EI). The available lengths for those 
tie elements are estimated from the compression field proposed by Yi et al. (2022), 
as depicted in Figure 6.38.  

𝑙𝑙𝑏𝑏𝐴𝐴,𝐴𝐴𝐶𝐶𝐶𝐶 = 𝐻𝐻 − (𝑐𝑐𝑏𝑏 + 𝑐𝑐𝑡𝑡) − �𝑑𝑑𝑏𝑏,𝑏𝑏𝑐𝑐� − 𝑧𝑧𝑠𝑠 tan 25° 
= (60 in. ) − (5.41 in. +4.75 in. ) − (1.41 in. ) − (59.8 in. ) tan 25° 
= 20.6 in. 
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𝑙𝑙𝑏𝑏𝐴𝐴,𝐷𝐷𝑆𝑆 = 𝐻𝐻 − (𝑐𝑐𝑏𝑏 + 𝑐𝑐𝑡𝑡) − �𝑑𝑑𝑏𝑏,𝑡𝑡𝑟𝑟� − 𝑧𝑧𝑠𝑠 tan 25° 
= (60 in. ) − (5.41 in. +4.75 in. ) − (0.75 in. ) − (59.8 in. ) tan 25° 
= 21.2 in. 

 
Figure 6.38 Critical section for the development of column ties and drilled shaft ties 

The anchorage requirement for the column and drilled shaft reinforcement can be 
satisfied by employing hooked reinforcement. The proposed critical section of the 
column reinforcement indicates the hooked column reinforcement oriented towards 
the column is not effective. However, the diagonal strut flowing down from the 
column (Strut AB in Figure 6.38) can activate the bearing action of the inner-
oriented hooked column reinforcement. Therefore, the anchorage requirement 
check for the 90-degree hooked column reinforcement is performed with the 
minimum required development length of hooked bars, regardless of the hook 
orientation. The required development lengths for 90-degree and 180-degree 
hooked bars are computed in accordance with AASHTO LRFD (2020). The 
reinforcement confinement factor, 𝜆𝜆𝑏𝑏𝑐𝑐, is 0.8 determined from given details of the 
column reinforcement; the coating factor, 𝜆𝜆𝑐𝑐𝑐𝑐, is 1.0 for uncoated reinforcement; 
the excess reinforcement factor, 𝜆𝜆𝑡𝑡𝑏𝑏 , is 0.244 based on the designed column 
reinforcement; and the concrete density modification factor, 𝜆𝜆, is 1.0 for normal 
weight concrete. The required development length of a hooked No. 11 bar is 
calculated below: 

𝑙𝑙𝐴𝐴ℎ,𝐴𝐴𝐶𝐶𝐶𝐶 =
38.0(1.41 in. )

60.0
×

60 ksi
√3.6 ksi

× �
0.8 ∙ 1.0 ∙ 0.244

1.0
� 

= 5.5 in. < 𝑙𝑙𝑏𝑏𝐴𝐴,𝐴𝐴𝐶𝐶𝐶𝐶(= 20.6 in. ) 

The drilled shaft reinforcement also uses No. 9 hooked bars to satisfy the anchorage 
requirement. The orientation of the 180-degree hook does not affect the 
development length. The same equation is used to calculate the development length 
of a hooked No. 9 bar with excess reinforcement factor, 𝜆𝜆𝑡𝑡𝑏𝑏, of 0.532 based on the 
designed drilled shaft reinforcement: 



82 

𝑙𝑙𝐴𝐴ℎ,𝐷𝐷𝑆𝑆 =
38.0(1.128 in. )

60.0
×

60 ksi
√3.6 ksi

× �
0.8 ∙ 1.0 ∙ 0.532

1.0
� 

= 9.6 in. < 𝑙𝑙𝑏𝑏𝐴𝐴,𝐷𝐷𝑆𝑆(= 21.2 in. ) 

Therefore, the research team confirms that all reinforcing bars of the footing 
designed for Load Case VII are safe for the applied loading condition. 
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6.2.3. Reinforcement Layout 
The reinforcement details designed for Load Case I through V are sufficient to resist 
the internal force resulting from the biaxial flexural load cases: Load Case VI and 
VII. Therefore, the details remain the same as those proposed by Yi et al. (2022) 
and depicted in Figure 6.39 through Figure 6.43. 

, including locations 

 
Figure 6.39 Reinforcement details for anchorage of vertical ties 

 













84 

 
Figure 6.40 Reinforcement details for ties: elevation view 

 
Figure 6.41 Details for shrinkage and temperature reinforcement: elevation view 
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Figure 6.42 Details for bottom mat reinforcement: plan view 
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Figure 6.43 Details for top mat reinforcement: plan view 

  



87 

Chapter 7. Summary and Conclusions 

This research has developed design recommendations for drilled shaft footings 
subjected to biaxial flexural loading scenarios (Load Case VI: axial compression 
combined with moderate biaxial flexure; Load Case VII: axial compression 
combined with large biaxial flexure) using the 3D STM in a conservative way. Due 
to the lack of previous studies, the recommendations were mostly refined from 
those proposed by Yi et al. (2022) for drilled shaft footings subjected to uniaxial 
loading scenarios, and they are summarized as follows:  

Equivalent Force System: Single Strut and Single Tie Equivalent Force System 

Yi et al. (2022) proposed determining the equivalent force system of the 3D strut-
and-tie model for drilled shaft footings based on the actual stress distribution 
corresponding to the applied loading condition. Complex biaxial flexural loading 
leads to complex stress distribution over the column section, requiring complicated 
calculations and decisions to establish the equivalent force system comprising 
multiple struts and ties. Therefore, the research team simplified the procedure by 
employing the single strut and single tie equivalent force system. The strut-and-tie 
model developed from the proposed equivalent force system also leads to a 
conservative design owing to decreased strut inclinations. 

Development of 3D Strut-and-Tie Models for Load Cases VI and VII 

According to the established equivalent force system and the reactions at drilled 
shafts resulting from the biaxial flexural loading conditions, the research team 
developed 3D strut-and-tie models for Load Case VI and Load Case VII. The 
configurations of the models were determined based on the asymmetric internal 
force flow in drilled shaft footings. The 3D strut-and-tie model of Load Case VII 
was idealized to a strut-and-tie model configuration, similar to that of Load Case 
III, familiar to designers. The idealized model has a deficiency: it cannot consider 
the offset between the truss panels of the column tie transfer mechanism and those 
of the drilled shaft tie transfer mechanism; however, the error resulting from the 
deficiency was insignificant.  

Modified Equivalent Square Bearing Face for CCC Node 

The bearing face of the CCC node is conservatively determined using the extreme 
compressive fiber stress derived from the sectional analysis for the equivalent force 
system. Assuming the extreme compressive fiber stress is uniformly distributed 
over the bearing face of the CCC node leads it to become much smaller than the 
actual compressive area over the column section. Furthermore, the modified 
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bearing face is assumed to be an equivalent square-shaped bearing face, which is 
proposed as the modified equivalent square bearing face in this research, to develop 
the nodal geometry of the CCC node. 

Development of 3D Nodal Geometry (CCC Node) 

The research team proposed subdividing the CCC node into two parts for 
developing the 3D nodal geometry. The diagonal struts acting at the CCC node are 
divided by the ratio of the reaction force acting on the drilled shaft of each part with 
respect to the diagonal plane of the foundation. Similarly, the modified equivalent 
square bearing face and the vertical strut from the column are also subdivided. The 
research team resolved all diagonal struts on each side into one diagonal strut; 
therefore, the number of forces acting at each subdivided CCC node becomes three: 
subdivided resultant compressive force, resolved diagonal strut, and lateral force 
component of the resolved diagonal strut. The 3D nodal geometry of each 
subdivided node can be established following the recommendations of Yi et al. 
(2022). 

Although many load cases subjected to biaxial flexural loading are considered in 
the design of in-practice drilled shaft footings, little research on the application of 
the 3D STM to the footings has been conducted. Since the research team 
conservatively refined the design recommendations established based on large-
scale tests conducted by Yi et al. (2022), drilled shaft footings can be designed for 
safety using the proposed methods. Designers can design even drilled shaft footings 
with complicated internal force flow using the 3D STM based on the outcomes of 
this research.  

However, even though the proposed recommendations were established 
conservatively, it must be acknowledged that they have not been experimentally 
verified. Additional experimental studies on drilled shaft footings subjected to 
biaxial loading scenarios can verify the conservativeness of the proposed 
recommendations and further refine them. 
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Appendix A Determination of Equivalent 
Force System 

The biaxial flexural loading scenarios corresponding to Load Case VI and VII 
induces complex strain and stress distributions over the column section. This 
section describes the calculation procedure of the sectional analysis to derive the 
distributions. 

Three unknowns (neutral axis depth (c); neutral axis inclination (𝜃𝜃); and extreme 
compressive fiber strain ( 𝜀𝜀𝑐𝑐 )) are required to develop the strain and stress 
distributions over the column section and can be resolved iteratively using three 
equilibrium equations (∑𝑃𝑃𝑐𝑐 = 0; ∑𝑀𝑀𝑐𝑐𝑢𝑢 = 0; ∑𝑀𝑀𝑐𝑐𝑦𝑦 = 0).  

As illustrated in Figure A.1, the analysis is performed using the coordinate system 
with the centroid of the column as the origin. The coordinates (𝑥𝑥 − 𝑦𝑦 coordinate in 
Figure #) of all four corners of the column and tensile column reinforcing bars are 
transformed to new coordinates (𝑥𝑥’ − 𝑦𝑦’ coordinate in Figure A.1) rotated by the 
neutral axis inclination (𝜃𝜃).  

 

Coordinate Transformation (𝑥𝑥,  𝑦𝑦) → (𝑥𝑥′,  𝑦𝑦′) 

𝑥𝑥′ = 𝑥𝑥 cos 𝜃𝜃 + 𝑦𝑦 sin𝜃𝜃 

𝑦𝑦′ = 𝑦𝑦 cos 𝜃𝜃 − 𝑥𝑥 sin𝜃𝜃 

 

Therefore, the neutral axis depth (𝑐𝑐) is expressed with the offset from the rotated 
coordinate system (𝑦𝑦’𝑛𝑛 (=𝑎𝑎𝑏𝑏𝑘𝑘(𝑦𝑦’𝑏𝑏 − 𝑐𝑐) in Figure A.1) for the analysis. The column 
reinforcing bars subjected to compression and at the compressive faces of the 
column (A − B and B − D faces in Figure A.1) are not considered in the analysis to 
simplify the calculation.     
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Figure A.1 Stress distribution over the column section under biaxial flexural loading 

 
The shape of the compressive region varies depending on the neutral axis position; 
therefore, this report computes the compressive resultant force and its centroid 
position for each shape geometrically. Figure A.2 presents different shapes of the 
compressive region available over the column section.  
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Figure A.2 Different shapes of compressive region depending on neutral axis depth 

 
For each case, the resultant compressive force (𝐶𝐶) and its centroid position (𝑥̅𝑥 and 𝑦𝑦� 
in 𝑥𝑥 − 𝑦𝑦 coordinate) can be derived as below using three assumed values (𝑦𝑦𝑛𝑛′ , 𝜃𝜃, 
and 𝜀𝜀𝑐𝑐).  
 
 
Case I 
 

 
 

𝑏𝑏:
𝐻𝐻

sin𝜃𝜃
= (𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′ ):𝐻𝐻 cos 𝜃𝜃 

 

𝑏𝑏 =
𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

cos 𝜃𝜃 sin𝜃𝜃
 

 

𝐶𝐶𝑐𝑐 = �
1
3� �

𝑏𝑏
𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

2
(𝜀𝜀𝑐𝑐𝐸𝐸𝑐𝑐)� 

 

𝑥̅𝑥 = �
𝑊𝑊
2
− �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

4 sin𝜃𝜃
�� ;𝑦𝑦� = �−

𝐻𝐻
2

+ �
𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

4 cos𝜃𝜃
�� 
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Case II 
 

The compressive region is subdivided into three parts to simplify the calculation. 

 
 
Region 1 
 

𝐶𝐶1 =
1
2�

𝜀𝜀𝑐𝑐 �
𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
� 𝐸𝐸𝑐𝑐 �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

sin𝜃𝜃
 ��𝐻𝐻 

 

𝑥𝑥1��� =
𝑦𝑦𝐴𝐴′

sin𝜃𝜃
− �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

3 sin𝜃𝜃
� 

 
𝑦𝑦1��� = 0 
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Region 2 
 

𝐶𝐶2 =
1
2
�
𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

sin𝜃𝜃
𝐻𝐻��𝜀𝜀𝑐𝑐 �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
� 𝐸𝐸𝑐𝑐� 

 

𝑥𝑥2��� =
𝑊𝑊
2
− �

𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

3 sin𝜃𝜃
� 

 

𝑦𝑦2��� = −
𝐻𝐻
2

+
𝐻𝐻
3

= −
𝐻𝐻
6

 
 
Region 3 
 

𝐶𝐶3 =
1
6
�
𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

sin𝜃𝜃
𝐻𝐻��𝜀𝜀𝑐𝑐𝐸𝐸𝑐𝑐 − 𝜀𝜀𝑐𝑐𝑎𝑎𝑏𝑏𝑘𝑘 �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
� 𝐸𝐸𝑐𝑐� 

 

𝑥𝑥3��� =
𝑊𝑊
2
− 𝑎𝑎𝑏𝑏𝑘𝑘 �

𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

4 sin𝜃𝜃
� 

 

𝑦𝑦3��� = −
𝐻𝐻
2

+
𝐻𝐻
4

= −
𝐻𝐻
4

 
 
 
Combining the computed results from three subdivided regions, 
 

𝐶𝐶𝑐𝑐 = 𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3 
 

𝑥̅𝑥 =
𝐶𝐶1𝑥𝑥1��� + 𝐶𝐶2𝑥𝑥2��� + 𝐶𝐶3𝑥𝑥3���

𝐶𝐶
 

 

𝑦𝑦� =
𝐶𝐶1𝑦𝑦1��� + 𝐶𝐶2𝑦𝑦2��� + 𝐶𝐶3𝑦𝑦3���

𝐶𝐶
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Case III 
 
Similarly, the compressive region is also subdivided into six parts to simplify the 
calculation. 
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Region 1 
 

𝐶𝐶1 =
1
3�

𝜀𝜀𝑐𝑐 �
𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐷𝐷′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
� 𝐸𝐸𝑐𝑐 �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐷𝐷′

sin𝜃𝜃 cos 𝜃𝜃
�� (𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐷𝐷′ ) 

 

𝑥𝑥1��� = −
𝑊𝑊
2

+
1
3
�
𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐷𝐷′

sin𝜃𝜃
� 

 

𝑦𝑦1��� = −
𝐻𝐻
2

+
2
3
�
𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐷𝐷′

cos 𝜃𝜃
� 

 
Region 2 
 

𝐶𝐶2 =
1
2
�
𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝑛𝑛

cos 𝜃𝜃 sin𝜃𝜃
 � (𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐷𝐷′ )𝜀𝜀𝑐𝑐 �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐷𝐷′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
� 𝐸𝐸𝑐𝑐 

 

𝑥𝑥2��� = −
𝑊𝑊
2

+
2(𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐷𝐷′ )

3 sin𝜃𝜃
+

1
2
�
𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝑛𝑛

cos𝜃𝜃
� cot 𝜃𝜃 

 

𝑦𝑦2��� =
𝐻𝐻
2
−

1
2
�
𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝑛𝑛

cos𝜃𝜃
� 

 
Region 3 
 

𝐶𝐶3 = 𝐻𝐻 �
𝑦𝑦𝐷𝐷′ − 𝑦𝑦𝐴𝐴′

sin𝜃𝜃
��𝜀𝜀𝑐𝑐 �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐷𝐷′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
� 𝐸𝐸𝑐𝑐� 

 
𝑥𝑥3��� = 0 

 
𝑦𝑦3��� = 0 

 
 
Region 4 
 

𝐶𝐶4 =
1
2
𝐻𝐻 �

𝑦𝑦𝐷𝐷′ − 𝑦𝑦𝐴𝐴′

sin𝜃𝜃
��𝜀𝜀𝑐𝑐 �

𝑦𝑦𝐷𝐷′ − 𝑦𝑦𝐴𝐴′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
� 𝐸𝐸𝑐𝑐� 

 

𝑥𝑥4��� = −
𝑊𝑊
2

+ �
𝐻𝐻
2

cot𝜃𝜃� +
2(𝑦𝑦𝐷𝐷′ − 𝑦𝑦𝐴𝐴′ )

3 sin𝜃𝜃
 

 
𝑦𝑦4� = 0 
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Region 5 
 

𝐶𝐶5 =
1
2�

�
𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

sin𝜃𝜃
�  𝐻𝐻��𝜀𝜀𝑐𝑐 �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
� 𝐸𝐸𝑐𝑐� 

 

𝑥𝑥5��� =
𝑊𝑊
2
− �

𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

3 sin𝜃𝜃
� 

 

𝑦𝑦5��� = −
𝐻𝐻
2

+
𝐻𝐻
3

= −
𝐻𝐻
6

 
 
Region 6 
 

𝐶𝐶6 =
1
6
𝐻𝐻 �

𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

sin𝜃𝜃
��𝜀𝜀𝑐𝑐𝐸𝐸𝑐𝑐 �1 −

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
�  � 

 

𝑥𝑥6��� =
𝑊𝑊
2
− �

𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

4 sin𝜃𝜃
� 

 

𝑦𝑦6��� = −
𝐻𝐻
2

+
𝐻𝐻
4

= −
𝐻𝐻
4

 
 
 
Combining the computed results from three subdivided regions, 
 

𝐶𝐶𝑐𝑐 = 𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3 + 𝐶𝐶4 + 𝐶𝐶5 + 𝐶𝐶6 
 

𝑥̅𝑥 =
𝐶𝐶1𝑥𝑥1��� + 𝐶𝐶2𝑥𝑥2��� + 𝐶𝐶3𝑥𝑥3��� + 𝐶𝐶4𝑥𝑥4��� + 𝐶𝐶5𝑥𝑥5��� + 𝐶𝐶6𝑥𝑥6���

𝐶𝐶
 

 

𝑦𝑦� =
𝐶𝐶1𝑦𝑦1��� + 𝐶𝐶2𝑦𝑦2��� + 𝐶𝐶3𝑦𝑦3��� + 𝐶𝐶4𝑦𝑦4� + 𝐶𝐶5𝑦𝑦5��� + 𝐶𝐶6𝑦𝑦6���

𝐶𝐶
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Based on the established equations, the calculation procedure to establish the 
equivalent force system of the Load Case VI example is presented in this section.  
 
Given Load Combination (Load Case VI) 
 

𝑃𝑃𝑐𝑐 = 1656 kip 
𝑀𝑀𝑐𝑐𝑢𝑢 = 1440 kip − ft 
𝑀𝑀𝑐𝑐𝑦𝑦 = 3670 kip − ft 

 
 
1st iteration 

Neutral axis depth (𝑦𝑦𝑛𝑛′ ): 0 in. 

Neutral axis inclination (𝜃𝜃): 60.5° �= atan �𝑀𝑀𝑢𝑢𝑢𝑢𝑆𝑆𝑢𝑢
𝑀𝑀𝑢𝑢𝑢𝑢𝑆𝑆𝑢𝑢

��; Uncracked section assumed  

Extreme compressive fiber strain (𝜀𝜀𝑐𝑐): -0.0001 (Elastic state) 

 
Case II (𝑦𝑦𝐴𝐴′ = −57.6 in. < 𝑦𝑦𝑛𝑛′ = 0 in. < 𝑦𝑦𝐴𝐴′ = 57.6 in.) 
 
Region 1 
 

𝐶𝐶1 =
1
2�

𝜀𝜀𝑐𝑐 �
𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
� 𝐸𝐸𝑐𝑐 �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

sin𝜃𝜃
 ��𝐻𝐻 = −109.9 kip 

 

𝑥𝑥1��� =
𝑦𝑦𝐴𝐴′

sin𝜃𝜃
− �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

3 sin𝜃𝜃
� = 15.9 in. 

 
𝑦𝑦1��� = 0 in. 

 

Region 2 
 

𝐶𝐶2 =
1
2
�
𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

sin𝜃𝜃
𝐻𝐻��𝜀𝜀𝑐𝑐 �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
� 𝐸𝐸𝑐𝑐� = −195.5 kip 

 

𝑥𝑥2��� =
𝑊𝑊
2
− �

𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

3 sin𝜃𝜃
� = 30.9 in. 

 

𝑦𝑦2��� = −
𝐻𝐻
2

+
𝐻𝐻
3

= −
𝐻𝐻
6

= −12.5 in. 
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Region 3 
 

𝐶𝐶3 =
1
6
�
𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

sin𝜃𝜃
𝐻𝐻��𝜀𝜀𝑐𝑐𝐸𝐸𝑐𝑐 − 𝜀𝜀𝑐𝑐𝑎𝑎𝑏𝑏𝑘𝑘 �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
� 𝐸𝐸𝑐𝑐� = −116.0 kip 

 

𝑥𝑥3��� =
𝑊𝑊
2
− 𝑎𝑎𝑏𝑏𝑘𝑘 �

𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

4 sin𝜃𝜃
� = 34.4 in. 

 

𝑦𝑦3��� = −
𝐻𝐻
2

+
𝐻𝐻
4

= −
𝐻𝐻
4

= −18.8 in. 
 
 
Combining the computed results from three subdivided regions, 
 

𝐶𝐶𝑐𝑐 = 𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3 = −421.4 kip 
 

𝑥̅𝑥 =
𝐶𝐶1𝑥𝑥1��� + 𝐶𝐶2𝑥𝑥2��� + 𝐶𝐶3𝑥𝑥3���

𝐶𝐶
= 27.9 in. 

 

𝑀𝑀𝑦𝑦,𝑐𝑐 = 𝑎𝑎𝑏𝑏𝑘𝑘 �
𝐶𝐶𝑥̅𝑥
12�

= 979.76 kip − ft 
 

𝑦𝑦� =
𝐶𝐶1𝑦𝑦1��� + 𝐶𝐶2𝑦𝑦2��� + 𝐶𝐶3𝑦𝑦3���

𝐶𝐶
= −11.0 in. 

𝑀𝑀𝑢𝑢,𝑐𝑐 = 𝑎𝑎𝑏𝑏𝑘𝑘 �
𝐶𝐶𝑥̅𝑥
12�

= 386.28 kip − ft 
 
 
From the assumed variables, the tensile forces and moments due to the column 
reinforcing bars can be computed as below. 
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Rebar No. 
x 
 

(in.) 

y 
 

(in.) 

Rebar 
size 

Diameter 
 

(in.) 

Area 
 

(in.2) 

Distance from 
the neutral 

axis 
𝑦𝑦𝑡𝑡′ 

(in.) 

Tensile strain 
(εs = 𝜀𝜀𝑐𝑐

𝑦𝑦𝑏𝑏
′−𝑦𝑦𝑛𝑛′

𝑦𝑦𝑡𝑡′−𝑦𝑦𝑛𝑛
) 

Tensile stress 
 

(ksi) 

𝑇𝑇𝑠𝑠 
 

(kip) 

𝑀𝑀𝑠𝑠,𝑢𝑢 
 

(kip-in.) 

𝑀𝑀𝑠𝑠,𝑦𝑦 
 

(kip-in.) 

1 -41.40 33.90 #11 1.41 1.56 52.72 9.15E-05 2.65 4.14 11.69 14.28 
2 -41.40 27.74 #11 1.41 1.56 49.69 8.62E-05 2.50 3.90 9.02 13.46 
3 -41.40 21.57 #11 1.41 1.56 46.66 8.10E-05 2.35 3.66 6.58 12.64 
4 -41.40 15.41 #11 1.41 1.56 43.62 7.57E-05 2.20 3.42 4.40 11.82 
5 -41.40 9.25 #11 1.41 1.56 40.59 7.04E-05 2.04 3.19 2.46 10.99 
6 -41.40 3.08 #11 1.41 1.56 37.56 6.52E-05 1.89 2.95 0.76 10.17 
7 -41.40 -3.08 #11 1.41 1.56 34.53 5.99E-05 1.74 2.71 -0.70 9.35 
8 -41.40 -9.25 #11 1.41 1.56 31.50 5.47E-05 1.59 2.47 -1.91 8.53 
9 -41.40 -15.41 #11 1.41 1.56 28.46 4.94E-05 1.43 2.23 -2.87 7.71 

10 -41.40 -21.57 #11 1.41 1.56 25.43 4.41E-05 1.28 2.00 -3.59 6.89 
11 -41.40 -27.74 #11 1.41 1.56 22.40 3.89E-05 1.13 1.76 -4.06 6.07 
12 -41.40 -33.90 #11 1.41 1.56 19.37 3.36E-05 0.97 1.52 -4.30 5.25 
13 -33.87 33.90 #11 1.41 1.56 46.17 8.01E-05 2.32 3.62 10.24 10.23 
14 -26.35 33.90 #11 1.41 1.56 39.61 6.87E-05 1.99 3.11 8.79 6.83 
15 -18.82 33.90 #11 1.41 1.56 33.06 5.74E-05 1.66 2.60 7.33 4.07 
16 -11.29 33.90 #11 1.41 1.56 26.51 4.60E-05 1.33 2.08 5.88 1.96 
17 -3.76 33.90 #11 1.41 1.56 19.95 3.46E-05 1.00 1.57 4.43 0.49 
18 3.76 33.90 #11 1.41 1.56 13.40 2.33E-05 0.67 1.05 2.97 -0.33 
19 11.29 33.90 #11 1.41 1.56 6.85 1.19E-05 0.34 0.54 1.52 -0.51 
20 18.82 33.90 #11 1.41 1.56 0.29 5.07E-07 0.01 0.02 0.06 -0.04 
21 26.35 33.90 #11 1.41 1.56 -6.26 N/A* 
22 33.87 33.90 #11 1.41 1.56 -12.81 N/A* 
23 41.40 33.90 #11 1.41 1.56 -19.37 N/A* 

*Rebars under compression are not considered. Sum 48.55 58.70 139.86 
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Therefore, three equilibrium equations can be established as below. 

 

Force Equilibrium Equation 

�𝑃𝑃 = (𝐶𝐶𝑐𝑐 + 𝑇𝑇𝑠𝑠) − 𝑃𝑃 = −1283.17 kip 

Moment Equilibrium Equation (x-axis) 

�𝑀𝑀𝑢𝑢 = �𝑀𝑀𝑢𝑢,𝑐𝑐 + 𝑀𝑀𝑢𝑢,𝑠𝑠� − 𝑀𝑀𝑐𝑐𝑢𝑢 = −996.41 kip − ft 

Moment Equilibrium Equation (y-axis) 

�𝑀𝑀𝑦𝑦 = �𝑀𝑀𝑦𝑦,𝑐𝑐 + 𝑀𝑀𝑦𝑦,𝑠𝑠� − 𝑀𝑀𝑐𝑐𝑦𝑦 = −2549.20 kip − ft 

 

The research team used the goal seek algorithm equipped in Excel to satisfy the 
equilibrium equations. 

 

1st Goal Seek Cycle 

Step To satisfy By changing Updated variables Equilibrium Equations 

1 �𝑀𝑀𝑦𝑦 = 0 
Extreme 

Compressive 
Fiber Strain (𝜀𝜀𝑐𝑐) 

𝑦𝑦𝑛𝑛′ = 0 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00033 

𝜃𝜃 = 60.53° 

�𝑃𝑃 = −435.20 kip 

�𝑀𝑀𝑢𝑢 = 12.52 kip − ft 

�𝑀𝑀𝑦𝑦 = 0 kip − ft 

2 �𝑃𝑃 = 0 Neutral Axis 
Depth (𝑦𝑦𝑛𝑛′ ) 

𝑦𝑦𝑛𝑛′ = 8.86 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00033 

𝜃𝜃 = 60.53° 

�𝑃𝑃 = 0 kip 

�𝑀𝑀𝑢𝑢 = 28.04 kip − ft 

�𝑀𝑀𝑦𝑦 = 274.44 kip − ft 

3 �𝑀𝑀𝑢𝑢 = 0 Neutral Axis 
Inclination (𝜃𝜃) 

𝑦𝑦𝑛𝑛′ = 8.86 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00033 

𝜃𝜃 = 61.19° 

�𝑃𝑃 = 5.78 kip 

�𝑀𝑀𝑢𝑢 = 0 kip − ft 

�𝑀𝑀𝑦𝑦 = 305.33 kip − ft 
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2nd Goal Seek Cycle 

Step To satisfy By changing Updated variables Equilibrium Equations 

1 �𝑀𝑀𝑦𝑦 = 0 
Extreme 

Compressive 
Fiber Strain (𝜀𝜀𝑐𝑐) 

𝑦𝑦𝑛𝑛′ = 8.86 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00030 

𝜃𝜃 = 61.19° 

�𝑃𝑃 = −121.86 kip 

�𝑀𝑀𝑢𝑢 = −110.60 kip − ft 

�𝑀𝑀𝑦𝑦 = 0 kip − ft 

2 �𝑃𝑃 = 0 Neutral Axis 
Depth (𝑦𝑦𝑛𝑛′ ) 

𝑦𝑦𝑛𝑛′ = 11.57 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00030 

𝜃𝜃 = 61.19° 

�𝑃𝑃 = 0 kip 

�𝑀𝑀𝑢𝑢 = −106.49 kip − ft 

�𝑀𝑀𝑦𝑦 = 51.13 kip − ft 

3 �𝑀𝑀𝑢𝑢 = 0 Neutral Axis 
Inclination (𝜃𝜃) 

𝑦𝑦𝑛𝑛′ = 11.57 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00030 

𝜃𝜃 = 58.57° 

�𝑃𝑃 = −19.25 kip 

�𝑀𝑀𝑢𝑢 = 0 kip − ft 

�𝑀𝑀𝑦𝑦 = −63.92 kip − ft 

 

3rd Goal Seek Cycle 

Step To satisfy By changing Updated variables Equilibrium Equations 

1 �𝑀𝑀𝑦𝑦 = 0 
Extreme 

Compressive 
Fiber Strain (𝜀𝜀𝑐𝑐) 

𝑦𝑦𝑛𝑛′ = 11.57 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00031 

𝜃𝜃 = 58.57° 

�𝑃𝑃 = 9.76 kip 

�𝑀𝑀𝑢𝑢 = 23.53 kip − ft 

�𝑀𝑀𝑦𝑦 = 0 kip − ft 

2 �𝑃𝑃 = 0 Neutral Axis 
Depth (𝑦𝑦𝑛𝑛′ ) 

𝑦𝑦𝑛𝑛′ = 11.36 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00031 

𝜃𝜃 = 58.57° 

�𝑃𝑃 = 0 kip 

�𝑀𝑀𝑢𝑢 = 24.97 kip − ft 

�𝑀𝑀𝑦𝑦 = −3.48 kip − ft 

3 �𝑀𝑀𝑢𝑢 = 0 Neutral Axis 
Inclination (𝜃𝜃) 

𝑦𝑦𝑛𝑛′ = 11.36 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00031 

𝜃𝜃 = 59.17° 

�𝑃𝑃 = 4.25 kip 

�𝑀𝑀𝑢𝑢 = 0 kip − ft 

�𝑀𝑀𝑦𝑦 = 23.61 kip − ft 
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After a few more cycles, three values satisfying the equilibrium conditions can be 
obtained as below: 

 

𝑦𝑦𝑛𝑛′ = 11.47 in. (Case II) 

𝜀𝜀𝑐𝑐 = −0.00031 

𝜃𝜃 = 59.01° 

 

 

Given Load Combination (Load Case VII) 
 

𝑃𝑃𝑐𝑐 = 1015 kip 
𝑀𝑀𝑐𝑐𝑢𝑢 = 1144 kip − ft 
𝑀𝑀𝑐𝑐𝑦𝑦 = 5526 kip − ft 

 
 
1st iteration 

Neutral axis depth (𝑦𝑦𝑛𝑛′ ): 0 in. 

Neutral axis inclination (𝜃𝜃): 73.4° �= atan �𝑀𝑀𝑢𝑢𝑢𝑢𝑆𝑆𝑢𝑢
𝑀𝑀𝑢𝑢𝑢𝑢𝑆𝑆𝑢𝑢

��; Uncracked section assumed  

Extreme compressive fiber strain (𝜀𝜀𝑐𝑐): -0.0001 (Elastic state) 

 
Case II (𝑦𝑦𝐴𝐴′ = −57.6 in. < 𝑦𝑦𝑛𝑛′ = 0 in. < 𝑦𝑦𝐴𝐴′ = 57.6 in.) 
 
Region 1 
 

𝐶𝐶1 =
1
2�

𝜀𝜀𝑐𝑐 �
𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
� 𝐸𝐸𝑐𝑐 �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

sin𝜃𝜃
 ��𝐻𝐻 = −261.1 kip 

 

𝑥𝑥1��� =
𝑦𝑦𝐴𝐴′

sin𝜃𝜃
− �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

3 sin𝜃𝜃
� = 22.6 in. 

 
𝑦𝑦1��� = 0 in. 
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Region 2 
 

𝐶𝐶2 =
1
2
�
𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

sin𝜃𝜃
𝐻𝐻��𝜀𝜀𝑐𝑐 �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
� 𝐸𝐸𝑐𝑐� = −172.6 kip 

 

𝑥𝑥2��� =
𝑊𝑊
2
− �

𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

3 sin𝜃𝜃
� = 37.6 in. 

 

𝑦𝑦2��� = −
𝐻𝐻
2

+
𝐻𝐻
3

= −
𝐻𝐻
6

= −12.5 in. 
 
 
 
Region 3 
 

𝐶𝐶3 =
1
6
�
𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

sin𝜃𝜃
𝐻𝐻��𝜀𝜀𝑐𝑐𝐸𝐸𝑐𝑐 − 𝜀𝜀𝑐𝑐𝑎𝑎𝑏𝑏𝑘𝑘 �

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′

𝑦𝑦𝑛𝑛′ − 𝑦𝑦𝐴𝐴′
�𝐸𝐸𝑐𝑐� = −38.0 kip 

 

𝑥𝑥3��� =
𝑊𝑊
2
− 𝑎𝑎𝑏𝑏𝑘𝑘 �

𝑦𝑦𝐴𝐴′ − 𝑦𝑦𝐴𝐴′

4 sin𝜃𝜃
� = 39.4 in. 

 

𝑦𝑦3��� = −
𝐻𝐻
2

+
𝐻𝐻
4

= −
𝐻𝐻
4

= −18.8 in. 
 
 
Combining the computed results from three subdivided regions, 
 

𝐶𝐶𝑐𝑐 = 𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3 = −471.8 kip 
 

𝑥̅𝑥 =
𝐶𝐶1𝑥𝑥1��� + 𝐶𝐶2𝑥𝑥2��� + 𝐶𝐶3𝑥𝑥3���

𝐶𝐶
= 29.4 in. 

 

𝑀𝑀𝑦𝑦,𝑐𝑐 = 𝑎𝑎𝑏𝑏𝑘𝑘 �
𝐶𝐶𝑥̅𝑥
12�

= 1155.7 kip − ft 
 

𝑦𝑦� =
𝐶𝐶1𝑦𝑦1��� + 𝐶𝐶2𝑦𝑦2��� + 𝐶𝐶3𝑦𝑦3���

𝐶𝐶
= −6.1 in. 

𝑀𝑀𝑢𝑢,𝑐𝑐 = 𝑎𝑎𝑏𝑏𝑘𝑘 �
𝐶𝐶𝑥̅𝑥
12�

= 239.3 kip − ft 
 
 
From the assumed variables, the tensile forces and moments due to the column 
reinforcing bars can be computed as below. 
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Rebar No. 
x 
 

(in.) 

y 
 

(in.) 

Rebar 
size 

Diameter 
 

(in.) 

Area 
 

(in.2) 

Distance from 
the neutral 

axis 
𝑦𝑦𝑡𝑡′ 

(in.) 

Tensile strain 
(εs = 𝜀𝜀𝑐𝑐

𝑦𝑦𝑏𝑏
′−𝑦𝑦𝑛𝑛′

𝑦𝑦𝑡𝑡′−𝑦𝑦𝑛𝑛
) 

Tensile stress 
 

(ksi) 

𝑇𝑇𝑠𝑠 
 

(kip) 

𝑀𝑀𝑠𝑠,𝑢𝑢 
 

(kip-in.) 

𝑀𝑀𝑠𝑠,𝑦𝑦 
 

(kip-in.) 

1 -41.40 33.90 #11 1.41 1.56 49.36 9.17E-05 2.66 4.15 11.72 14.31 
2 -41.40 27.74 #11 1.41 1.56 47.60 8.84E-05 2.56 4.00 9.24 13.80 
3 -41.40 21.57 #11 1.41 1.56 45.84 8.51E-05 2.47 3.85 6.92 13.29 
4 -41.40 15.41 #11 1.41 1.56 44.08 8.19E-05 2.37 3.70 4.76 12.78 
5 -41.40 9.25 #11 1.41 1.56 42.32 7.86E-05 2.28 3.56 2.74 12.27 
6 -41.40 3.08 #11 1.41 1.56 40.56 7.53E-05 2.18 3.41 0.88 11.76 
7 -41.40 -3.08 #11 1.41 1.56 38.79 7.21E-05 2.09 3.26 -0.84 11.25 
8 -41.40 -9.25 #11 1.41 1.56 37.03 6.88E-05 1.99 3.11 -2.40 10.74 
9 -41.40 -15.41 #11 1.41 1.56 35.27 6.55E-05 1.90 2.96 -3.81 10.23 

10 -41.40 -21.57 #11 1.41 1.56 33.51 6.22E-05 1.81 2.82 -5.06 9.72 
11 -41.40 -27.74 #11 1.41 1.56 31.75 5.90E-05 1.71 2.67 -6.17 9.20 
12 -41.40 -33.90 #11 1.41 1.56 29.99 5.57E-05 1.62 2.52 -7.12 8.69 
13 -33.87 33.90 #11 1.41 1.56 42.15 7.83E-05 2.27 3.54 10.00 10.00 
14 -26.35 33.90 #11 1.41 1.56 34.93 6.49E-05 1.88 2.94 8.29 6.44 
15 -18.82 33.90 #11 1.41 1.56 27.72 5.15E-05 1.49 2.33 6.58 3.65 
16 -11.29 33.90 #11 1.41 1.56 20.51 3.81E-05 1.10 1.72 4.87 1.62 
17 -3.76 33.90 #11 1.41 1.56 13.29 2.47E-05 0.72 1.12 3.16 0.35 
18 3.76 33.90 #11 1.41 1.56 6.08 1.13E-05 0.33 0.51 1.44 -0.16 
19 11.29 33.90 #11 1.41 1.56 -1.14 N/A* 
20 18.82 33.90 #11 1.41 1.56 -8.35 N/A* 
21 26.35 33.90 #11 1.41 1.56 -15.56 N/A* 
22 33.87 33.90 #11 1.41 1.56 -22.78 N/A* 
23 41.40 33.90 #11 1.41 1.56 -29.99 N/A* 

*Rebars under compression are not considered. Sum 52.16 45.21 159.93 
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Therefore, three equilibrium equations can be established as below. 

 

Force Equilibrium Equation 

�𝑃𝑃 = (𝐶𝐶𝑐𝑐 + 𝑇𝑇𝑠𝑠) − 𝑃𝑃 = −595.37 kip 

Moment Equilibrium Equation (x-axis) 

�𝑀𝑀𝑢𝑢 = �𝑀𝑀𝑢𝑢,𝑐𝑐 + 𝑀𝑀𝑢𝑢,𝑠𝑠� − 𝑀𝑀𝑐𝑐𝑢𝑢 = −859.53 kip − ft 

Moment Equilibrium Equation (y-axis) 

�𝑀𝑀𝑦𝑦 = �𝑀𝑀𝑦𝑦,𝑐𝑐 + 𝑀𝑀𝑦𝑦,𝑠𝑠� − 𝑀𝑀𝑐𝑐𝑦𝑦 = −4210.37 kip − ft 

 

The research team used the goal seek algorithm equipped in Excel to satisfy the 
equilibrium equations. 

 

1st Goal Seek Cycle 

Step To satisfy By changing Updated variables Equilibrium Equations 

1 �𝑀𝑀𝑦𝑦 = 0 
Extreme 

Compressive 
Fiber Strain (𝜀𝜀𝑐𝑐) 

𝑦𝑦𝑛𝑛′ = 0 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00042 

𝜃𝜃 = 73.40° 

�𝑃𝑃 = 747.55 kip 

�𝑀𝑀𝑢𝑢 = 50.83 kip − ft 

�𝑀𝑀𝑦𝑦 = 0 kip − ft 

2 �𝑃𝑃 = 0 Neutral Axis 
Depth (𝑦𝑦𝑛𝑛′ ) 

𝑦𝑦𝑛𝑛′ = −11.30 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00042 

𝜃𝜃 = 73.40° 

�𝑃𝑃 = 0 kip 

�𝑀𝑀𝑢𝑢 = 137.05 kip − ft 

�𝑀𝑀𝑦𝑦 = −601.16 kip − ft 

3 �𝑀𝑀𝑢𝑢 = 0 Neutral Axis 
Inclination (𝜃𝜃) 

𝑦𝑦𝑛𝑛′ = −11.30 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00042 

𝜃𝜃 = 76.07° 

�𝑃𝑃 = 44.80 kip 

�𝑀𝑀𝑢𝑢 = 0 kip − ft 

�𝑀𝑀𝑦𝑦 = −395.41 kip − ft 
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2nd Goal Seek Cycle 

Step To satisfy By changing Updated variables Equilibrium Equations 

1 �𝑀𝑀𝑦𝑦 = 0 
Extreme 

Compressive 
Fiber Strain (𝜀𝜀𝑐𝑐) 

𝑦𝑦𝑛𝑛′ = −11.30 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00045 

𝜃𝜃 = 76.07° 

�𝑃𝑃 = 126.48 kip 

�𝑀𝑀𝑢𝑢 = 88.17 kip − ft 

�𝑀𝑀𝑦𝑦 = 0 kip − ft 

2 �𝑃𝑃 = 0 Neutral Axis 
Depth (𝑦𝑦𝑛𝑛′ ) 

𝑦𝑦𝑛𝑛′ = −12.95 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00045 

𝜃𝜃 = 76.07° 

�𝑃𝑃 = 0 kip 

�𝑀𝑀𝑢𝑢 = 111.89 kip − ft 

�𝑀𝑀𝑦𝑦 = −100.67 kip − ft 

3 �𝑀𝑀𝑢𝑢 = 0 Neutral Axis 
Inclination (𝜃𝜃) 

𝑦𝑦𝑛𝑛′ = −12.95 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00045 

𝜃𝜃 = 78.02° 

�𝑃𝑃 = 36.25 kip 

�𝑀𝑀𝑢𝑢 = 0 kip − ft 

�𝑀𝑀𝑦𝑦 = 74.31 kip − ft 

 

3rd Goal Seek Cycle 

Step To satisfy By changing Updated variables Equilibrium Equations 

1 �𝑀𝑀𝑦𝑦 = 0 
Extreme 

Compressive 
Fiber Strain (𝜀𝜀𝑐𝑐) 

𝑦𝑦𝑛𝑛′ = −12.95 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00045 

𝜃𝜃 = 78.02° 

�𝑃𝑃 = 22.30 kip 

�𝑀𝑀𝑢𝑢 = −15.18 kip − ft 

�𝑀𝑀𝑦𝑦 = 0 kip − ft 

2 �𝑃𝑃 = 0 Neutral Axis 
Depth (𝑦𝑦𝑛𝑛′ ) 

𝑦𝑦𝑛𝑛′ = −13.24 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00045 

𝜃𝜃 = 78.02° 

�𝑃𝑃 = 0 kip 

�𝑀𝑀𝑢𝑢 = −10.43 kip − ft 

�𝑀𝑀𝑦𝑦 = −16.74 kip − ft 

3 �𝑀𝑀𝑢𝑢 = 0 Neutral Axis 
Inclination (𝜃𝜃) 

𝑦𝑦𝑛𝑛′ = −13.24 in. 

(Case II) 

𝜀𝜀𝑐𝑐 = −0.00045 

𝜃𝜃 = 77.84° 

�𝑃𝑃 = −3.38 kip 

�𝑀𝑀𝑢𝑢 = 0 kip − ft 

�𝑀𝑀𝑦𝑦 = −33.18 kip − ft 
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After a few more cycles, three values satisfying the equilibrium conditions can be 
obtained as below: 

 

𝑦𝑦𝑛𝑛′ = 13.28 in. (Case II) 

𝜀𝜀𝑐𝑐 = −0.00045 

𝜃𝜃 = 77.95° 
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Appendix B Derivation of 3D Strut-and-Tie 
Model Element Forces 

Load Case VI: Axial Compression combined with Moderate Biaxial Flexure 

  

 
Figure B.1 3D strut-and-tie model (axonometric view): Load Case VI 

 

From the sectional analysis,  

Resultant Forces: 

𝐹𝐹𝐴𝐴 = −1736.2 kip;   𝐹𝐹𝐴𝐴 = 80.2 kip 

Reactions: 

𝑅𝑅𝐴𝐴 = 657.3 kip;  𝑅𝑅𝐷𝐷 = 520.2 kip;  𝑅𝑅𝐴𝐴 = 170.7 kip;  𝑅𝑅𝐹𝐹 = 307.8 kip 

 

Node x-coordinate 
[in.] 

y-coordinate 
[in.] 

z-coordinate 
[in.] 

A 23.70 -9.19 54.00 
B -36.08 16.53 5.41 
C 63.00 -63.00 5.41 
D 63.00 63.00 5.41 
E -63.00 63.00 5.41 
F -63.00 -63.00 5.41 
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Node D 

Known Forces: 

𝐹𝐹𝑢𝑢 = 0; 𝐹𝐹𝑦𝑦 = 0; 𝐹𝐹𝑧𝑧 = 𝑅𝑅𝐷𝐷 = 520.2 kip 

 

Element Length Unit Vector 
𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘� 

DA 95.5 -0.412 -0.756 0.509 
DC 126.0 0 -1 0 
DE 126.0 -1 0 0 

 

�
𝐷𝐷𝐴𝐴�����⃗

�𝐷𝐷𝐴𝐴�����⃗ �
𝐷𝐷𝐶𝐶�����⃗

�𝐷𝐷𝐶𝐶�����⃗ �
𝐷𝐷𝐸𝐸�����⃗

�𝐷𝐷𝐸𝐸�����⃗ �
� �
𝐹𝐹𝐷𝐷𝐴𝐴
𝐹𝐹𝐷𝐷𝐴𝐴
𝐹𝐹𝐷𝐷𝐴𝐴

� = �
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� 

 

�
𝐹𝐹𝐷𝐷𝐴𝐴
𝐹𝐹𝐷𝐷𝐴𝐴
𝐹𝐹𝐷𝐷𝐴𝐴

� = �
𝐷𝐷𝐴𝐴�����⃗

�𝐷𝐷𝐴𝐴�����⃗ �
𝐷𝐷𝐶𝐶�����⃗

�𝐷𝐷𝐶𝐶�����⃗ �
𝐷𝐷𝐸𝐸�����⃗

�𝐷𝐷𝐸𝐸�����⃗ �
�
−1

�
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� = �
−0.412 0 −1
−0.756 −1 0
0.509 0 0

�
−1

�
0
0

−520.2
� 

= �
−1022.2 kip (Strut)

772.9 kip (Tie)
420.7 kip (Tie)

� 

 

Node C 

Known Forces: 

𝐹𝐹𝑢𝑢 = 0; 𝐹𝐹𝑦𝑦 = 𝐹𝐹𝐷𝐷𝐴𝐴 = 772.9 kip; 𝐹𝐹𝑧𝑧 = 𝑅𝑅𝐴𝐴 = 657.3 kip 

 

Element Length Unit Vector 
𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘� 

CA 82.5 -0.477 0.652 0.589 
CB 127.1 -0.780 0.626 0 
CF 126.0 -1 0 0 

 

�
𝐶𝐶𝐴𝐴�����⃗

�𝐶𝐶𝐴𝐴�����⃗ �
𝐶𝐶𝐶𝐶�����⃗

�𝐶𝐶𝐶𝐶�����⃗ �
𝐶𝐶𝐹𝐹�����⃗

�𝐶𝐶𝐹𝐹�����⃗ �
� �
𝐹𝐹𝐴𝐴𝐴𝐴
𝐹𝐹𝐴𝐴𝐴𝐴
𝐹𝐹𝐴𝐴𝐹𝐹

� = �
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� 
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�
𝐹𝐹𝐴𝐴𝐴𝐴
𝐹𝐹𝐴𝐴𝐴𝐴
𝐹𝐹𝐴𝐴𝐹𝐹

� = �
𝐶𝐶𝐴𝐴�����⃗

�𝐶𝐶𝐴𝐴�����⃗ �
𝐶𝐶𝐶𝐶�����⃗

�𝐶𝐶𝐶𝐶�����⃗ �
𝐶𝐶𝐹𝐹�����⃗

�𝐶𝐶𝐹𝐹�����⃗ �
�
−1

�
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� = �
−0.477 −0.780 −1
0.652 0.626 0
0.589 0 0

�
−1

�
0

−772.9
−657.3

� 

= �
−1115.6 kip (Strut)
−71.9 kip (Strut)

587.7 kip (Tie)
� 

 

This calculation result justifies the bottom mat configuration of the 3D strut-and-
tie model for Load Case VI (Figure 5.3a). The y-force components of Struts AC 
and AD are 727.9 kip (=1115.6 × 0.652) and 772.9 kip (=1022.2 × 0.756), 
respectively. Therefore, an additional strut (Strut BC) with the y-force component 
of 45 kip (=71.9×0.626) is required to be connected to Node C to satisfy the 
equilibrium condition. 

 

Node F 

Known Forces: 

𝐹𝐹𝑢𝑢 = 𝐹𝐹𝐴𝐴𝐹𝐹 = 587.7 kip; 𝐹𝐹𝑦𝑦 = 0; 𝐹𝐹𝑧𝑧 = 𝑅𝑅𝐹𝐹 = 307.8 kip 

 

Element Length Unit Vector 
𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘� 

FA 113.0 0.767 0.476 0.430 
FB 84.0 0.321 0.947 0 
FE 126.0 0 1 0 

 

�
𝐹𝐹𝐴𝐴�����⃗

�𝐹𝐹𝐴𝐴�����⃗ �
𝐹𝐹𝐶𝐶�����⃗

�𝐹𝐹𝐶𝐶�����⃗ �
𝐹𝐹𝐸𝐸�����⃗

�𝐹𝐹𝐸𝐸�����⃗ �
� �
𝐹𝐹𝐹𝐹𝐴𝐴
𝐹𝐹𝐹𝐹𝐴𝐴
𝐹𝐹𝐹𝐹𝐴𝐴

� = �
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� 

 

�
𝐹𝐹𝐹𝐹𝐴𝐴
𝐹𝐹𝐹𝐹𝐴𝐴
𝐹𝐹𝐹𝐹𝐴𝐴

� = �
𝐹𝐹𝐴𝐴�����⃗

�𝐹𝐹𝐴𝐴�����⃗ �
𝐹𝐹𝐶𝐶�����⃗

�𝐹𝐹𝐶𝐶�����⃗ �
𝐹𝐹𝐸𝐸�����⃗

�𝐹𝐹𝐸𝐸�����⃗ �
�
−1

�
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� = �
0.767 0.321 0
0.476 0.947 1
0.430 0 0

�
−1

�
−587.7

0
−307.8

� 

= �
−715.9 kip (Strut)
−120.1 kip (Strut)

454.6 kip (Tie)
� 
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Node E 

Known Forces: 

𝐹𝐹𝑢𝑢 = 𝐹𝐹𝐷𝐷𝐴𝐴 = 420.7 kip; 𝐹𝐹𝑦𝑦 = −𝐹𝐹𝐹𝐹𝐴𝐴 = −454.6 kip; 𝐹𝐹𝑧𝑧 = 𝑅𝑅𝐴𝐴 = 170.7 kip 

 

Element Length Unit Vector 
𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘� 

EA 122.8 0.706 -0.588 0.396 
EB 53.7 0.501 -0.865 0 

 

For the calculation, the y- and z-force components are only considered. 

�
𝐸𝐸𝐴𝐴�����⃗

�𝐸𝐸𝐴𝐴�����⃗ �
𝐸𝐸𝐶𝐶�����⃗

�𝐸𝐸𝐶𝐶�����⃗ �
� �𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴

� = �
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� 

 

�𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴
� = �

𝐸𝐸𝐴𝐴�����⃗

�𝐸𝐸𝐴𝐴�����⃗ �
𝐸𝐸𝐶𝐶�����⃗

�𝐸𝐸𝐶𝐶�����⃗ �
�
−1

�
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� = � 0 2.528
−1.156 −1.717�

−1
�
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� 

= �−431.5 kip (Strut)
−232.3 kip (Strut)� 

 

Almost the same result can be obtained from the x- and z-force components. 

 

�𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴
� = �

𝐸𝐸𝐴𝐴�����⃗

�𝐸𝐸𝐴𝐴�����⃗ �
𝐸𝐸𝐶𝐶�����⃗

�𝐸𝐸𝐶𝐶�����⃗ �
�
−1

�−𝐹𝐹𝑢𝑢−𝐹𝐹𝑧𝑧
� = � 0 2.528

−1.156 −1.717�
−1
�
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� 

= �−431.5 kip (Strut)
−231.6 kip (Strut)� 
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Node B 

Known Forces:   

𝐹𝐹𝑧𝑧 = 𝐹𝐹𝐴𝐴𝐴𝐴′ = 80.2 kip 

 

Element Length Unit Vector 
𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘� 

BA 81.2 0.736 -0.317 0.598 
 

𝐹𝐹𝐴𝐴𝐴𝐴 = −
80.2

0.598
= −134.0 kip (Strut) 

 

Equilibrium Condition Check at Node B 

Element Force 

x-force 
component 

[kip] 
(Unit vector) 

y-force 
component 

[kip] 
(Unit vector) 

z-force 
component 

[kip] 
(Unit vector) 

BA -134.0 -98.7 
(0.736) 

42.5 
(-0.317) 

-80.2 
(0.598) 

BC -71.9 -56.0 
(0.780) 

45.0 
(-0.626) 

0 
(0) 

BE -232.3 116.4 
(-0.501) 

-201.0 
(0.865) 

0 
(0) 

BF -120.1 38.5 
(-0.321) 

113.7 
(-0.947) 

0 
(0) 

𝐹𝐹𝐴𝐴 80.2 0 
(0) 

0 
(0) 

80.2 
(1) 

Sum 0.2 0.2 0 
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Node A 

Equilibrium Condition Check at Node A 

Element Force 

x-force 
component 

[kip] 
(Unit vector) 

y-force 
component 

[kip] 
(Unit vector) 

z-force 
component 

[kip] 
(Unit vector) 

AB -134.0 98.7 
(-0.736) 

-42.5 
(0.317) 

80.2 
(-0.598) 

AC -1115.6 -531.6 
(0.477) 

727.9 
(-0.653) 

657.3 
(-0.589) 

AD -1022.2 -420.8 
(0.412) 

-772.9 
(0.756) 

520.2 
(-0.509) 

AE -431.5 304.6 
(-0.706) 

-253.6 
(0.588) 

170.7 
(-0.396) 

AF -715.9 549.2 
(-0.767) 

340.9 
(-0.476) 

307.8 
(-0.430) 

𝐹𝐹𝐴𝐴 -1736.2 0 
(0) 

0 
(0) 

-1736.2 
(1) 

Sum 0.1 -0.1 0 
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Load Case VII: Axial Compression combined with Large Biaxial Flexure 

  

 
Figure B.2 3D strut-and-tie model (axonometric view): Load Case VII 

 

From the sectional analysis,  

Resultant Forces: 

𝐹𝐹𝐴𝐴 = −1471.3 kip;   𝐹𝐹𝐴𝐴 = 456.3 kip 

Reactions: 

𝑅𝑅𝐴𝐴 = 571.4 kip;  𝑅𝑅𝐷𝐷 = 462.4 kip;  𝑅𝑅𝐴𝐴 = −63.9 kip;  𝑅𝑅𝐹𝐹 = 45.1 kip 

 

Node x-coordinate 
[in.] 

y-coordinate 
[in.] 

z-coordinate 
[in.] 

A 34.08 -6.24 55.25 
B -35.42 9.98 5.41 
C 63.00 -63.00 5.41 
D 63.00 63.00 5.41 
E -63.00 63.00 5.41 
F -63.00 -63.00 5.41 
H 63.00 63.00 55.25 
I -63.00 63.00 55.25 
J -63.00 -63.00 55.25 
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Node C 

Known Forces: 

𝐹𝐹𝑢𝑢 = 0; 𝐹𝐹𝑦𝑦 = 0; 𝐹𝐹𝑧𝑧 = 𝑅𝑅𝐴𝐴 = 571.4 kip 

 

Element Length Unit Vector 
𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘� 

CA 80.9 -0.358 0.702 0.616 
CD 126.0 0 1 0 
CF 126.0 -1 0 0 

 

�
𝐶𝐶𝐴𝐴�����⃗

�𝐶𝐶𝐴𝐴�����⃗ �
𝐶𝐶𝐷𝐷�����⃗

�𝐶𝐶𝐷𝐷�����⃗ �
𝐶𝐶𝐹𝐹�����⃗

�𝐶𝐶𝐹𝐹�����⃗ �
� �
𝐹𝐹𝐴𝐴𝐴𝐴
𝐹𝐹𝐴𝐴𝐷𝐷
𝐹𝐹𝐴𝐴𝐹𝐹

� = �
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� 

 

�
𝐹𝐹𝐴𝐴𝐴𝐴
𝐹𝐹𝐴𝐴𝐷𝐷
𝐹𝐹𝐴𝐴𝐹𝐹

� = �
𝐶𝐶𝐴𝐴�����⃗

�𝐶𝐶𝐴𝐴�����⃗ �
𝐶𝐶𝐷𝐷�����⃗

�𝐶𝐶𝐷𝐷�����⃗ �
𝐶𝐶𝐹𝐹�����⃗

�𝐶𝐶𝐹𝐹�����⃗ �
�
−1

�
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� = �
−0.358 0 −1
0.702 1 0
0.626 0 0

�
−1

�
0
0

−571.4
� 

= �
−927.3 kip (Strut)

650.8 kip (Tie)
331.5 kip (Tie)

� 

 

Node D 

Known Forces: 

𝐹𝐹𝑢𝑢 = 0; 𝐹𝐹𝑦𝑦 = −𝐹𝐹𝐴𝐴𝐷𝐷 = −650.8 kip; 𝐹𝐹𝑧𝑧 = 𝑅𝑅𝐷𝐷 = 462.4 kip 

 

Element Length Unit Vector 
𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘� 

DA 90.1 -0.321 -0.769 0.553 
DB 111.8 -0.880 -0.474 0 
DE 126.0 -1 0 0 

 

�
𝐷𝐷𝐴𝐴�����⃗

�𝐷𝐷𝐴𝐴�����⃗ �
𝐷𝐷𝐶𝐶������⃗

�𝐷𝐷𝐶𝐶������⃗ �
𝐷𝐷𝐸𝐸�����⃗

�𝐷𝐷𝐸𝐸�����⃗ �
� �
𝐹𝐹𝐷𝐷𝐴𝐴
𝐹𝐹𝐷𝐷𝐴𝐴
𝐹𝐹𝐷𝐷𝐴𝐴

� = �
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� 
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�
𝐹𝐹𝐷𝐷𝐴𝐴
𝐹𝐹𝐷𝐷𝐴𝐴
𝐹𝐹𝐷𝐷𝐴𝐴

� = �
𝐷𝐷𝐴𝐴�����⃗

�𝐷𝐷𝐴𝐴�����⃗ �
𝐷𝐷𝐶𝐶������⃗

�𝐷𝐷𝐶𝐶������⃗ �
𝐷𝐷𝐸𝐸�����⃗

�𝐷𝐷𝐸𝐸�����⃗ �
�
−1

�
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� = �
−0.321 −0.880 −1
−0.769 −0.474 0
0.553 0 0

�
−1

�
0

650.8
−462.4

� 

= �
−853.7 kip (Strut)
−17.8 kip (Strut)

284.0 kip (Tie)
� 

 

Node F 

Known Forces: 

𝐹𝐹𝑢𝑢 = 𝐹𝐹𝐴𝐴𝐹𝐹 = 331.5 kip; 𝐹𝐹𝑦𝑦 = 0; 𝐹𝐹𝑧𝑧 = 𝑅𝑅𝐹𝐹 = 45.1 kip 

 

Element Length Unit Vector 
𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘� 

FA 123.0 0.789 0.461 0.405 
FB 78.0 0.354 0.935 0 
FE 126.0 0 1 0 

 

�
𝐹𝐹𝐴𝐴�����⃗

�𝐹𝐹𝐴𝐴�����⃗ �
𝐹𝐹𝐶𝐶�����⃗

�𝐹𝐹𝐶𝐶�����⃗ �
𝐹𝐹𝐸𝐸�����⃗

�𝐹𝐹𝐸𝐸�����⃗ �
� �
𝐹𝐹𝐹𝐹𝐴𝐴
𝐹𝐹𝐹𝐹𝐴𝐴
𝐹𝐹𝐹𝐹𝐴𝐴

� = �
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� 

 

�
𝐹𝐹𝐹𝐹𝐴𝐴
𝐹𝐹𝐹𝐹𝐴𝐴
𝐹𝐹𝐹𝐹𝐴𝐴

� = �
𝐹𝐹𝐴𝐴�����⃗

�𝐹𝐹𝐴𝐴�����⃗ �
𝐹𝐹𝐶𝐶�����⃗

�𝐹𝐹𝐶𝐶�����⃗ �
𝐹𝐹𝐸𝐸�����⃗

�𝐹𝐹𝐸𝐸�����⃗ �
�
−1

�
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� = �
0.789 0.3540 0
0.461 0.935 1
0.405 0 0

�
−1

�
−331.5

0
−45.1

� 

= �
−111.3 kip (Strut)
−689.2 kip (Strut)

696.1 kip (Tie)
� 
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Node E 

Known Forces: 

𝐹𝐹𝑢𝑢 = 𝐹𝐹𝐷𝐷𝐴𝐴 = 284.0 kip; 𝐹𝐹𝑦𝑦 = −𝐹𝐹𝐹𝐹𝐴𝐴 = −696.1 kip; 𝐹𝐹𝑦𝑦 = 𝑅𝑅𝐹𝐹 = 45.1 kip 

 

Based on the given strut-and-tie model configuration, 

Element Length Unit Vector 
𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘� 

EB 59.8 0.462 -0.887 0 
 

𝐹𝐹𝐴𝐴𝐴𝐴 𝑓𝑓𝑏𝑏𝑝𝑝𝑚𝑚 𝐹𝐹𝐷𝐷𝐷𝐷 =
−284.0
0.462

= −615.4 ≠ 𝐹𝐹𝐴𝐴𝐴𝐴 𝑓𝑓𝑏𝑏𝑝𝑝𝑚𝑚 𝐹𝐹𝐹𝐹𝐷𝐷 =
696.1
−0.887

= −784.7 kip 

 

A new nodal position of Node E is determined to transfer the force discrepancy 
between Ties FE (696.1 kip) and DE (284.0 kip) to estimate the error built in the 
model. Therefore, the unit vector of Strut EB satisfying the equilibrium condition 
at Node E can be determined. 

𝚤𝚤̂ =
𝐹𝐹𝐷𝐷𝐴𝐴

�𝐹𝐹𝐷𝐷𝐴𝐴2 + 𝐹𝐹𝐹𝐹𝐴𝐴2
=

284.0
�284.02 + (−696.1)2

= 0.378 

𝚥𝚥̂ =
𝐹𝐹𝐹𝐹𝐴𝐴

�𝐹𝐹𝐷𝐷𝐴𝐴2 + 𝐹𝐹𝐹𝐹𝐴𝐴2
=

−696.1
�284.02 + (−696.1)2

= −0.926 

 

 
Figure B.3 Plan view of 3D strut-and-tie model: Load Case VII 
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Based on the determined unit vector, the new Node E can be positioned at 6-in. 
shifted over the x-axis from its original position, and its new x-coordinate can be 
computed as below. 

 

𝑥𝑥𝐴𝐴 = −63 + �27.6 −
53.0

0.926
(0.378)� = −63 + (27.6 − 6.0) = −57.0 in. 

 

Hence, the error is estimated by comparing the y-axis applied moment computed 
from the shifted Node E (𝑀𝑀𝑐𝑐𝑦𝑦,𝑛𝑛𝑡𝑡𝑐𝑐 𝐴𝐴) and that of the original value (𝑀𝑀𝑐𝑐𝑦𝑦). 

 

𝑀𝑀𝑐𝑐𝑦𝑦,𝑛𝑛𝑡𝑡𝑐𝑐 𝐴𝐴 =
(63.0)(571.4 + 462.4 − 45.1) + 57.0(63.9)

12
= 5494.2 kip − ft 

% Error = �
𝑀𝑀𝑐𝑐𝑦𝑦 − 𝑀𝑀𝑐𝑐𝑦𝑦,𝑛𝑛𝑡𝑡𝑐𝑐 𝐴𝐴

𝑀𝑀𝑐𝑐𝑦𝑦
� × 100 = �

5526.0 − 5494.2
5526.0

� × 100 = 0.58 % 

 

Therefore, the error is negligible, and Strut BE derived from the new unit vector is: 

 

𝐹𝐹𝐴𝐴𝐴𝐴 𝑓𝑓𝑏𝑏𝑝𝑝𝑚𝑚 𝐹𝐹𝐷𝐷𝐷𝐷 =
−284.0
0.378

= 𝐹𝐹𝐴𝐴𝐴𝐴 𝑓𝑓𝑏𝑏𝑝𝑝𝑚𝑚 𝐹𝐹𝐹𝐹𝐷𝐷 =
696.1
−0.926

= −751.8 kip 

 

It should be noted that the newly derived Strut BE and its unit vector are not 
exploited in nodal strength checks but for checking equilibrium conditions at Node 
B only.  
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Node I 

Known Forces: 

𝐹𝐹𝑢𝑢 = 0; 𝐹𝐹𝑦𝑦 = 0; 𝐹𝐹𝑧𝑧 = 𝑅𝑅𝐴𝐴 = −63.9 kip 

 

Element Length Unit Vector 
𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘� 

IB 77.8 0.354 -0.681 -0.641 
IH 126.0 1 0 0 
IJ 126.0 0 -1 0 

 

�
𝐼𝐼𝐶𝐶����⃗

�𝐼𝐼𝐶𝐶����⃗ �
𝐼𝐼𝐻𝐻����⃗

�𝐼𝐼𝐻𝐻����⃗ �
𝐼𝐼𝐼𝐼���⃗

�𝐼𝐼𝐼𝐼���⃗ �
� �
𝐹𝐹𝑆𝑆𝐴𝐴
𝐹𝐹𝑆𝑆𝐴𝐴
𝐹𝐹𝑆𝑆𝐴𝐴

� = �
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� 

 

�
𝐹𝐹𝑆𝑆𝐴𝐴
𝐹𝐹𝑆𝑆𝐴𝐴
𝐹𝐹𝑆𝑆𝐴𝐴

� = �
𝐼𝐼𝐶𝐶����⃗

�𝐼𝐼𝐶𝐶����⃗ �
𝐼𝐼𝐻𝐻����⃗

�𝐼𝐼𝐻𝐻����⃗ �
𝐼𝐼𝐼𝐼���⃗

�𝐼𝐼𝐼𝐼���⃗ �
�
−1

�
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� = �
0.354 1 0
−0.681 0 −1
−0.641 0 0

�
−1

�
0
0

63.9
� 

= �
−99.8 kip (Strut)

35.4 kip (Tie)
68.0 kip (Tie)

� 

 

Node H 

Known Forces: 

𝐹𝐹𝑢𝑢 = −𝐹𝐹𝑆𝑆𝐴𝐴 = −35.4 kip; 𝐹𝐹𝑦𝑦 = 0; 𝐹𝐹𝑧𝑧 = 0 

 

Element Length Unit Vector 
𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘� 

HA 75.0 -0.385 -0.923 0 
HGn N/A 0 -1 0 

 

For the calculation, the x- and y-force components are only considered. 

�
𝐻𝐻𝐴𝐴������⃗

�𝐻𝐻𝐴𝐴������⃗ �
𝐻𝐻𝐺𝐺𝑛𝑛��������⃗

�𝐻𝐻𝐺𝐺𝑛𝑛��������⃗ �
� �
𝐹𝐹𝐴𝐴𝐴𝐴
𝐹𝐹𝐴𝐴𝐴𝐴𝑛𝑛

� = �
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦

� 
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�
𝐹𝐹𝐴𝐴𝐴𝐴
𝐹𝐹𝐴𝐴𝐴𝐴𝑛𝑛

� = �
𝐻𝐻𝐴𝐴������⃗

�𝐻𝐻𝐴𝐴������⃗ �
𝐻𝐻𝐺𝐺𝑛𝑛��������⃗

�𝐻𝐻𝐺𝐺𝑛𝑛��������⃗ �
�
−1

�
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦

� = �−0.385 0
−0.923 −1�

−1
�
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦

� 

= �−91.9 kip (Strut)
84.8 kip (Tie) � 

 

Node J 

Known Forces: 

𝐹𝐹𝑢𝑢 = 0; 𝐹𝐹𝑦𝑦 = 𝐹𝐹𝑆𝑆𝐴𝐴 = 68.0 kip; 𝐹𝐹𝑧𝑧 = 0 

 

Element Length Unit Vector 
𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘� 

JA 112.5 0.863 0.505 0 
JG1 N/A 1 0 0 

 

For the calculation, the x- and y-force components are only considered. 

�
𝐼𝐼𝐴𝐴����⃗

�𝐼𝐼𝐴𝐴����⃗ �
𝐼𝐼𝐺𝐺1������⃗

�𝐼𝐼𝐺𝐺1������⃗ �
� �
𝐹𝐹𝐴𝐴𝐴𝐴
𝐹𝐹𝐴𝐴𝐴𝐴1

� = �
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦

� 

 

�
𝐹𝐹𝐴𝐴𝐴𝐴
𝐹𝐹𝐴𝐴𝐴𝐴1

� = �
𝐼𝐼𝐴𝐴����⃗

�𝐼𝐼𝐴𝐴����⃗ �
𝐼𝐼𝐺𝐺1������⃗

�𝐼𝐼𝐺𝐺1������⃗ �
�
−1

�
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦

� = �0.863 1
0.505 0�

−1
�
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦

� 

= �−134.7 kip (Strut)
116.3 kip (Tie) � 

 

 

 

�
𝐼𝐼𝐶𝐶����⃗

�𝐼𝐼𝐶𝐶����⃗ �
𝐼𝐼𝐻𝐻����⃗

�𝐼𝐼𝐻𝐻����⃗ �
𝐼𝐼𝐼𝐼���⃗

�𝐼𝐼𝐼𝐼���⃗ �
� �
𝐹𝐹𝑆𝑆𝐴𝐴
𝐹𝐹𝑆𝑆𝐴𝐴
𝐹𝐹𝑆𝑆𝐴𝐴

� = �
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� 
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�
𝐹𝐹𝑆𝑆𝐴𝐴
𝐹𝐹𝑆𝑆𝐴𝐴
𝐹𝐹𝑆𝑆𝐴𝐴

� = �
𝐼𝐼𝐶𝐶����⃗

�𝐼𝐼𝐶𝐶����⃗ �
𝐼𝐼𝐻𝐻����⃗

�𝐼𝐼𝐻𝐻����⃗ �
𝐼𝐼𝐼𝐼���⃗

�𝐼𝐼𝐼𝐼���⃗ �
�
−1

�
−𝐹𝐹𝑢𝑢
−𝐹𝐹𝑦𝑦
−𝐹𝐹𝑧𝑧

� = �
0.354 1 0
−0.681 0 −1
−0.641 0 0

�
−1

�
0
0

63.9
� 

= �
−99.8 kip (Strut)

35.4 kip (Tie)
68.0 kip (Tie)

� 

 

Node B 

Known Forces:   

𝐹𝐹𝑧𝑧 = 𝐹𝐹𝐴𝐴 + 𝑅𝑅𝐴𝐴 = 392.4 kip 

 

Element Length Unit Vector 
𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘� 

BA 87.1 0.798 -0.186 0.573 
 

𝐹𝐹𝐴𝐴𝐴𝐴 = −
392.4
0.573

= −685.4 kip (Strut) 

 

Equilibrium Condition Check at Node B 

Element Force 

x-force 
component 

[kip] 
(Unit vector) 

y-force 
component 

[kip] 
(Unit vector) 

z-force 
component 

[kip] 
(Unit vector) 

BA -685.4 -547.2 
(0.798) 

127.7 
(-0.186) 

-392.4 
(0.573) 

BD -17.8 -15.7 
(0.880) 

-8.5 
(0.474) 

0 
(0) 

*BE -751.8 284.0 
(-0.378) 

-696.1 
(0.926) 

0 
(0) 

BF -689.2 243.6 
(-0.354) 

644.7 
(-0.935) 

0 
(0) 

BI -99.8 35.4 
(-0.354) 

-68.0 
(0.681) 

-63.9 
(0.640) 

𝐹𝐹𝐴𝐴 456.3 0 
(0) 

0 
(0) 

456.3 
(1) 

Sum 0.1 -0.1 0 

*Newly derived Strut BE satisfying the equilibrium condition at Node E 
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Node A 

Equilibrium Condition Check at Node A 

Element Force 

x-force 
component 

[kip] 
(Unit vector) 

y-force 
component 

[kip] 
(Unit vector) 

z-force 
component 

[kip] 
(Unit vector) 

AB -685.4 547.2 
(-0.798) 

-127.7 
(0.186) 

392.4 
(-0.573) 

AC -927.3 -331.5 
(0.357) 

650.8 
(-0.702) 

571.4 
(-0.616) 

AD -835.7 -268.3 
(0.321) 

-642.3 
(0.769) 

462.4 
(-0.553) 

AF -111.3 87.9 
(-0.789) 

51.4 
(-0.461) 

45.1 
(-0.405) 

AH -91.9 -35.4 
(0.385) 

-84.8 
(0.923) 

0 
(0) 

FJ -134.7 116.3 
(-0.863) 

68.0 
(-0.505) 

0 
(0) 

𝐹𝐹𝐴𝐴 -1471.3 0 
(0) 

0 
(0) 

-1471.3 
(1) 

Sum 116.2 -84.6 0 

 

Therefore, the force components of the resolved strut (Strut AG) of the widespread 
struts (Struts 𝐴𝐴𝐺𝐺1,𝐴𝐴𝐺𝐺2, … ,𝐴𝐴𝐺𝐺𝑛𝑛) are determined to satisfy the equilibrium condition 
at Node A.  

 

Element Force 

x-force 
component 

[kip] 
(Unit vector) 

y-force 
component 

[kip] 
(Unit vector) 

z-force 
component 

[kip] 
(Unit vector) 

AG -143.7 -116.2 
(-0.808) 

84.6 
(0.589) 

0 
(0) 
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